Nerve Injury Alters Restraint-induced Activation of the Basolateral Amygdala in Male Rats

Author(s):  
James Kang ◽  
David Mor ◽  
Kevin A Keay

Abstract The amygdala is critical for the production of appropriate responses towards emotional or stressful stimuli. It has a characteristic neuronal activation pattern to acute stressors. Chronic pain and acute stress have each been shown to independently modulate the activity of the amygdala. Few studies have investigated the effect of pain or injury, on amygdala activation to acute stress. This study investigated the effects of a neuropathic injury on the activation response of the amygdala to an acute restraint stress. Chronic constriction injury of the right sciatic nerve (CCI) was used to create neuropathic injury and a single brief 15-minute acute restraint was used as an emotional/psychological stressor. All rats received cholera toxin B (CTB) retrograde tracer injections into the medial prefrontal cortex (mPFC) to assess if the amygdala to mPFC pathway was specifically regulated by the combination of neuropathic injury and acute stress. To assess differential patterns of activity in amygdala subregions, cFos expression was used as a marker for “acute”, restraint triggered neuronal activation, and FosB/DFosB expression was used to reveal prolonged neuronal activation / sensitisation triggered by CCI. Restraint resulted in a characteristic increase in cFos expression in the medial amygdala, which was not altered by CCI. Rats with a CCI showed increased cFos expression in the basolateral amygdala (BLA), in response to an acute restraint stress, but not in neurons projecting to the prefrontal cortex. Further, CCI rats showed an increase in FosB/ΔFosB expression which was exclusive to the BLA. This increase likely reflects sensitisation of the BLA as a consequence of nerve injury which may contribute to heightened sensitivity of BLA neurons to acute emotional/ psychological stressors.

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Vinicius M. Gadotti ◽  
Zizhen Zhang ◽  
Junting Huang ◽  
Gerald W. Zamponi

AbstractPeripheral nerve injury can lead to remodeling of brain circuits, and this can cause chronification of pain. We have recently reported that male mice subjected to spared injury of the sciatic nerve undergo changes in the function of the medial prefrontal cortex (mPFC) that culminate in reduced output of layer 5 pyramidal cells. More recently, we have shown that this is mediated by alterations in synaptic inputs from the basolateral amygdala (BLA) into GABAergic interneurons in the mPFC. Optogenetic inhibition of these inputs reversed mechanical allodynia and thermal hyperalgesia in male mice. It is known that the processing of pain signals can exhibit marked sex differences. We therefore tested whether the dysregulation of BLA to mPFC signaling is equally altered in female mice. Injection of AAV-Arch3.0 constructs into the BLA followed by implantation of a fiberoptic cannula into the mPFC in sham and SNI operated female mice was carried out, and pain behavioral responses were measured in response to yellow light mediated activation of this inhibitory opsin. Our data reveal that Arch3.0 activation leads to a marked increase in paw withdrawal thresholds and latencies in response to mechanical and thermal stimuli, respectively. However, we did not observe nerve injury-induced changes in mPFC layer 5 pyramidal cell output in female mice. Hence, the observed light-induced analgesic effects may be due to compensation for dysregulated neuronal circuits downstream of the mPFC.


Endocrinology ◽  
2012 ◽  
Vol 153 (10) ◽  
pp. 4838-4848 ◽  
Author(s):  
Guillermo A. Ariza Traslaviña ◽  
Celso Rodrigues Franci

Abstract CRH has been implicated as a mediator of stress-induced effects on the hypothalamus-pituitary-gonad axis, acting via CRH receptors in various brain regions. We investigated whether the effects of restraint stress on the secretion of gonadotropins on the morning of proestrus are mediated by the CRH-R1 or CRH-R2 receptors in the oval subdivision of the anterolateral BST, the central amygdala, the locus coeruleus (LC), or the A1 and A2 neuron groups in the medulla. At proestrus morning, rats were injected with antalarmin (a CRH-R1 antagonist), asstressin2-B (a CRH-R2 antagonist) or vehicles. Thirty minutes after the injection, the animals were placed into restraints for 30 min, and blood was sampled for 2 h. At the end of the experiment, the brains were removed for immunofluorescence analyses. Restraint stress increased the levels of FSH and LH. Antalarmin blocked the stress-induced increases in FSH and LH secretion, but astressin2-B only blocked the increase in FSH secretion. LC showed intense stress-induced neuronal activity. FOS/tyrosine-hydroxylase coexpression in LC was reduced by antalarmin, but not astressin2-B. The CRH-R1 receptor, more than CRH-R2 receptor, appears to be essential for the stimulation of the hypothalamus-pituitary-gonad axis by acute stress; this response is likely mediated in part by noradrenergic neurons in the LC. We postulate that the stress-induced facilitation of reproductive function is mediated, at least in part, by CRH action through CRH-R1 on noradrenaline neurons residing in the LC that trigger GnRH discharge and gonadotropin secretion.


2018 ◽  
Vol 239 (3) ◽  
pp. 339-350 ◽  
Author(s):  
Jennifer A Yang ◽  
Jessica K Hughes ◽  
Ruby A Parra ◽  
Katrina M Volk ◽  
Alexander S Kauffman

Restraint stress is a psychosocial stressor that suppresses reproductive status, including LH pulsatile secretion, but the neuroendocrine mechanisms underlying this inhibition remains unclear. Reproductive neural populations upstream of gonadotropin-releasing hormone (GnRH) neurons, such as kisspeptin, neurokinin B and RFRP-3 (GnIH) neurons, are possible targets for psychosocial stress to inhibit LH pulses, but this has not been well examined, especially in mice in which prior technical limitations prevented assessment of in vivo LH pulse secretion dynamics. Here, we examined whether one-time acute restraint stress alters in vivo LH pulsatility and reproductive neural populations in male mice, and what the time-course is for such alterations. We found that endogenous LH pulses in castrated male mice are robustly and rapidly suppressed by one-time, acute restraint stress, with suppression observed as quickly as 12–18 min. This rapid LH suppression parallels with increased in vivo corticosterone levels within 15 min of restraint stress. Although Kiss1, Tac2 and Rfrp gene expression in the hypothalamus did not significantly change after 90 or 180 min restraint stress, arcuate Kiss1 neural activation was significantly decreased after 180 min. Interestingly, hypothalamic Rfrp neuronal activation was strongly increased at early times after restraint stress initiation, but was attenuated to levels lower than controls by 180 min of restraint stress. Thus, the male neuroendocrine reproductive axis is quite sensitive to short-term stress exposure, with significantly decreased pulsatile LH secretion and increased hypothalamic Rfrp neuronal activation occurring rapidly, within minutes, and decreased Kiss1 neuronal activation also occurring after longer stress durations.


2009 ◽  
Vol 106 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Jonathan E. Campbell ◽  
Nasimeh Rakhshani ◽  
Sergiu Fediuc ◽  
Silvio Bruni ◽  
Michael C. Riddell

Although exercise is a common and potent activator of the hypothalamic-pituitary adrenal (HPA) axis, the effects of exercise on the acute stress response are not well understood. Here, we investigated the effects of short- (2 wk) and long-term (8 wk) voluntary wheel running on adrenal sensitivity to ACTH stimulation and the acute stress response to restraint in male rats. Diurnal glucocorticoid patterns were measured on days 7 (all groups) and 35 (8-wk groups). Rats were subjected to 20 min of restraint stress on either week 1 or on week 7 of treatment to assess HPA activation. One week later, exogenous ACTH (75 ng/kg) was administered to assess adrenal sensitivity to ACTH. Following this, adrenals were collected and analyzed for key proteins involved in corticosterone (CORT) synthesis. By the end of week 1, exercising (E) animals had twofold higher peak diurnal CORT levels compared with sedentary (S) animals ( P < 0.01). CORT values were not different between groups at week 8. In response to restraint stress at week 2, CORT values in E were approximately threefold greater than in S ( P < 0.05). No difference was found between E and S rats in the response to, or recovery from, restraint at week 8. During the ACTH challenge at week 2, E demonstrated a ∼2.5-fold increase in adrenal sensitivity compared with S, while no difference was found between E and S at week 8. The expression of steroidogenic acute regulatory protein was found to be ∼50% higher in the adrenals in E compared with S at week 2 ( P < 0.05), but no difference existed between groups at week 8. These results show that volitional wheel running initially causes hyperactivation of the HPA axis, due to enhanced adrenal sensitivity to ACTH, but that these alterations in HPA activity are completely restored by 8 wk of training.


Author(s):  
Taíz F. S. Brasil ◽  
Ivaldo J. A. Belém-Filho ◽  
Eduardo A. T. Fortaleza ◽  
José Antunes-Rodrigues ◽  
Fernando M. A. Corrêa

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1217
Author(s):  
Camila Marchi-Coelho ◽  
Willian Costa-Ferreira ◽  
Lilian L. Reis-Silva ◽  
Carlos C. Crestani

We investigated the role of angiotensin II type 1 (AT1 receptor) and type 2 (AT2 receptor) and MAS receptors present in the medial amygdaloid nucleus (MeA) in behavioral changes in the forced swimming test (FST) evoked by acute restraint stress in male rats. For this, rats received bilateral microinjection of either the selective AT1 receptor antagonist losartan, the selective AT2 receptor antagonist PD123319, the selective MAS receptor antagonist A-779, or vehicle 10 min before a 60 min restraint session. Then, behavior in the FST was evaluated immediately after the restraint (15 min session) and 24 h later (5 min session). The behavior in the FST of a non-stressed group was also evaluated. We observed that acute restraint stress decreased immobility during both sessions of the FST in animals treated with vehicle in the MeA. The decreased immobility during the first session was inhibited by intra-MeA administration of PD123319, whereas the effect during the second session was not identified in animals treated with A-779 into the MeA. Microinjection of PD123319 into the MeA also affected the pattern of active behaviors (i.e., swimming and climbing) during the second session of the FST. Taken together, these results indicate an involvement of angiotensinergic neurotransmissions within the MeA in behavioral changes in the FST evoked by stress.


2020 ◽  
Vol 6 (2) ◽  
pp. 100-110
Author(s):  
Despoina Kakagia ◽  
Apostolos Papalois ◽  
Maria Lambropoulou ◽  
Fotini Papachristou ◽  
Gregory Trypsiannis ◽  
...  

AbstractIntroductionPeptic mucosal damage induced by acute stress is a serious cause of morbidity and mortality in critically ill patients. The study aimed to investigate the protective, antioxidant and anti-inflammatory effects of pretreatment with Chios mastic gum (CMG), a traditionally consumed herbal resin naturally deriving from the trunk of Pistacia Lentiscus var. Chia compared to Omeprazole, a standard medication used in the prevention and treatment of gastritis, against the effects of cold restraint stress (CRS) in rat gastric and colonic mucosa.MethodsTwenty-one male Wistar rats were randomly assigned to three groups: Control (C), Omeprazole (O), and CMG (M), according to the pre-treatment regime, and were subjected to CRS at 40C for 3 hours. The gastric and colonic mucosal lesions were histologically assessed. ELISA measured blood concentrations of TNF-α, IL-1β, peroxidase, superoxide dismutase (SOD) and total antioxidant capacity (TEAC).ResultsIn both groups, O and M, gastric mucosal hyperemia, haemorrhagic infiltration and mucosal oedema, as well as colonic mucosal hyperaemia and haemorrhagic infiltration were significantly reduced compared to the controls (p<0.05). No significant differences were observed between Groups O and M. TNF-α levels were significantly lower in group M compared to Group O (p=0.013). IL-1β levels were significantly depressed in groups M and O compared to control (p≤ 0.001). The activity of both peroxidase and SOD enzymes decreased in group M compared to group O (p= 0.043 and p=0.047 respectively) and the control (p=0.018 and p< 0.001 respectively).ConclusionsThe natural Chios mastic gum is a promising nutritional supplement with protective properties to the peptic mucosa against CRS, exerting anti-inflammatory and antioxidant effects.


2021 ◽  
Vol 14 ◽  
Author(s):  
Waldo Lucas Luz ◽  
Mateus Santos-Silva ◽  
Patrick Bruno Cardoso ◽  
Nadyme Assad ◽  
Edinaldo Rogério da Silva Moraes ◽  
...  

Anxiety disorder is a well-recognized condition observed in subjects submitted to acute stress. Although the brain mechanisms underlying this disorder remain unclear, the available evidence indicates that oxidative stress and GABAergic dysfunction mediate the generation of stress-induced anxiety. Cannabinoids are known to be efficient modulators of behavior, given that the activation of the cannabinoid receptors type-1 (CB1 receptors) induces anxiolytic-like effects in animal models. In the present study, we aimed to describe the effects of the stimulation of the CB1 receptors on anxiety-like behavior, oxidative stress, and the GABA content of the brains of zebrafish submitted to acute restraint stress (ARS). The animals submitted to the ARS protocol presented evident anxiety-like behavior with increased lipid peroxidation in the brain tissue. The evaluation of the levels of GABA in the zebrafish telencephalon presented decreased levels of GABA in the ARS group in comparison with the control. Treatment with ACEA, a specific CB1 receptor agonist, prevented ARS-induced anxiety-like behavior and oxidative stress in the zebrafish brain. ACEA treatment also prevented a decrease in GABA in the telencephalon of the animals submitted to the ARS protocol. Overall, these preclinical data strongly suggest that the CB1 receptors represent a potential target for the development of the treatment of anxiety disorders elicited by acute stress.


Sign in / Sign up

Export Citation Format

Share Document