scholarly journals Preparation of microcrystalline cellulose from Rabdosia rubescens and study on its membrane properties

Author(s):  
Tong Wei ◽  
Meng Li ◽  
Wenrui Shi ◽  
Zhengyong Liang

Abstract Microcrystalline cellulose (MCC) from Rabdosia rubescens was prepared by acid hydrolysis, and the corresponding yield of MCC was about 94% when the hydrochloric acid concentration was 10%, the acid hydrolysis time was 70min and the acid hydrolysis temperature was 70℃. The MCC was dissolved in N-methylmorpholine-N-oxide(NMMO)by phase transformation method to prepare MCC membrane. The structure and mechanical properties of MCC membrane were studied systemically. The results showed that the cellulose structure changed from type I to type II in the process of membrane formation, and the thermal stability also decreased. The content of MCC in the casting solution has a great influence on the mechanical properties of the membranes. The higher the content of MCC, the better the comprehensive mechanical properties of the membranes. When the MCC content is 9%, the tensile strength is 8.38 MPa and the elongation at break is 26.72%. Finally, the separation properties of membrane studed by separation bovine serum albumin (BSA) from water. The results showed that the rejection rate and water flux changed positively and negatively with the change of MCC content. When the content was 5%, MCC membrane showed the best comprehensive performance, its rejection of BSA was 37.23 g/(m2·h), and the corresponding rejection rate and water flux were 88.87% and 41.89 L/(m2·h) respectively.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meng Li ◽  
Tong Wei ◽  
Chaoyi Qian ◽  
Zhengyong Liang

AbstractMicrocrystalline cellulose (MCC) was prepared easily from Rabdosia rubescens residue to realize the efficient utilization of waste resources. The yield was about 95.03% under the optimal conditions. Then, MCC membrane was prepared by phase transformation method and its structure and mechanical properties were studied systemically. The results showed the cellulose crystal structure changed from type I to type II in the process of forming membrane, and the thermal stability decreased simultaneously. The content of MCC in casting solution has great influence on the mechanical properties of membranes. The higher the content of MCC, the better the comprehensive mechanical properties of the membranes is. When MCC content is 9%, the tensile strength and elongation at break can reach 8.38 MPa and 26.72%, which is better than traditional cellulose membranes. Finally, the separation properties were studied by separation BSA from water. The results showed that the rejection rate and water flux changed positively and negatively with the change of MCC content. When the content was 5%, the membrane demonstrated the best comprehensive performance, its rejection for BSA was 37.23 g/(m2 h), the corresponding rejection rate and water flux were 88.87% and 41.89 L/(m2 h) respectively.


Membranes ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 106 ◽  
Author(s):  
Yehia M. Manawi ◽  
Kui Wang ◽  
Viktor Kochkodan ◽  
Daniel J. Johnson ◽  
Muataz A. Atieh ◽  
...  

In this work, novel polysulphone (PS) porous membranes for water desalination, incorporated with commercial and produced carbon nanotubes (CNT), were fabricated and analyzed. It was demonstrated that changing the main characteristics of CNT (e.g., loading in the dope solutions, aspect ratio, and functionality) significantly affected the membrane properties and performance including porosity, water flux, and mechanical and surface properties. The water flux of the fabricated membranes increased considerably (up to 20 times) along with the increase in CNT loading. Conversely, yield stress and Young’s modulus of the membranes dropped with the increase in the CNT loading mainly due to porosity increase. It was shown that the elongation at fracture for PS/0.25 wt. % CNT membrane was much higher than for pristine PS membrane due to enhanced compatibility of commercial CNTs with PS matrix. More pronounced effect on membrane’s mechanical properties was observed due to compatibility of CNTs with PS matrix when compared to other factors (i.e., changes in the CNT aspect ratio). The water contact angle for PS membranes incorporated with commercial CNT sharply decreased from 73° to 53° (membrane hydrophilization) for membranes with 0.1 and 1.0 wt. % of CNTs, while for the same loading of produced CNTs the water contact angles for the membrane samples increased from 66° to 72°. The obtained results show that complex interplay of various factors such as: loading of CNT in the dope solutions, aspect ratio, and functionality of CNT. These features can be used to engineer membranes with desired properties and performance.


2020 ◽  
Vol 15 ◽  
pp. 155892502092317
Author(s):  
Fahad S Al-Mubaddel ◽  
Hamad S AlRomaih ◽  
Mohammad Rezaul Karim ◽  
Monis Luqman ◽  
Maher M Al-Rashed ◽  
...  

The present study reports on the preparation of novel nanofibre membranes from the thermoplastic polymer polyvinylidene fluoride coated with chitosan to enhance membrane properties such as hydrophilicity, mechanical properties, water flux and salt rejection. Initially, a supporting layer was produced from polyvinylidene fluoride using phase inversion methods, followed by being coated with chitosan using either electrospinning or immersion methods. Two types of fabricated membranes with different coating methods were characterized and tested for physical and chemical performance using field-emission scanning electron microscopy, tensile tests, permeation tests (water flux and salt rejection) and contact angle measurements. It was found that the support membrane (polyvinylidene fluoride) produced by the phase inversion method that was coated with chitosan using electrospinning showed better performance, with a salt rejection up to 70% for MgSO4, a decreased the contact angle (52°) and improved the elongation at the breaking point (~82%).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lijia Cheng ◽  
Tianchang Lin ◽  
Ahmad Taha Khalaf ◽  
Yamei Zhang ◽  
Hongyan He ◽  
...  

AbstractNowadays, artificial bone materials have been widely applied in the filling of non-weight bearing bone defects, but scarcely ever in weight-bearing bone defects. This study aims to develop an artificial bone with excellent mechanical properties and good osteogenic capability. Firstly, the collagen-thermosensitive hydrogel-calcium phosphate (CTC) composites were prepared as follows: dissolving thermosensitive hydrogel at 4 °C, then mixing with type I collagen as well as tricalcium phosphate (CaP) powder, and moulding the composites at 37 °C. Next, the CTC composites were subjected to evaluate for their chemical composition, micro morphology, pore size, Shore durometer, porosity and water absorption ability. Following this, the CTC composites were implanted into the muscle of mice while the 70% hydroxyapatite/30% β-tricalcium phosphate (HA/TCP) biomaterials were set as the control group; 8 weeks later, the osteoinductive abilities of biomaterials were detected by histological staining. Finally, the CTC and HA/TCP biomaterials were used to fill the large segments of tibia defects in mice. The bone repairing and load-bearing abilities of materials were evaluated by histological staining, X-ray and micro-CT at week 8. Both the CTC and HA/TCP biomaterials could induce ectopic bone formation in mice; however, the CTC composites tended to produce larger areas of bone and bone marrow tissues than HA/TCP. Simultaneously, bone-repairing experiments showed that HA/TCP biomaterials were easily crushed or pushed out by new bone growth as the material has a poor hardness. In comparison, the CTC composites could be replaced gradually by newly formed bone and repair larger segments of bone defects. The CTC composites trialled in this study have better mechanical properties, osteoinductivity and weight-bearing capacity than HA/TCP. The CTC composites provide an experimental foundation for the synthesis of artificial bone and a new option for orthopedic patients.


2020 ◽  
Vol 17 (6) ◽  
pp. 831-836
Author(s):  
M. Vykunta Rao ◽  
Srinivasa Rao P. ◽  
B. Surendra Babu

Purpose Vibratory weld conditioning parameters have a great influence on the improvement of mechanical properties of weld connections. The purpose of this paper is to understand the influence of vibratory weld conditioning on the mechanical and microstructural characterization of aluminum 5052 alloy weldments. An attempt is made to understand the effect of the vibratory tungsten inert gas (TIG) welding process parameters on the hardness, ultimate tensile strength and microstructure of Al 5052-H32 alloy weldments. Design/methodology/approach Aluminum 5052 H32 specimens are welded at different combinations of vibromotor voltage inputs and time of vibrations. Voltage input is varied from 50 to 230 V at an interval of 10 V. At each voltage input to the vibromotor, there are three levels of time of vibration, i.e. 80, 90 and 100 s. The vibratory TIG-welded specimens are tested for their mechanical and microstructural properties. Findings The results indicate that the mechanical properties of aluminum alloy weld connections improved by increasing voltage input up to 160 V. Also, it has been observed that by increasing vibromotor voltage input beyond 160 V, mechanical properties were reduced significantly. It is also found that vibration time has less influence on the mechanical properties of weld connections. Improvement in hardness and ultimate tensile strength of vibratory welded joints is 16 and 14%, respectively, when compared without vibration, i.e. normal weld conditions. Average grain size is measured as per ASTM E 112–96. Average grain size is in the case of 0, 120, 160 and 230 is 20.709, 17.99, 16.57 and 20.8086 µm, respectively. Originality/value Novel vibratory TIG welded joints are prepared. Mechanical and micro-structural properties are tested.


Membranes ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 156 ◽  
Author(s):  
Shailesh Dangwal ◽  
Ruochen Liu ◽  
Lyndon D. Bastatas ◽  
Elena Echeverria ◽  
Chengqian Huang ◽  
...  

ZnO was deposited on macroporous α-alumina membranes via atomic layer deposition (ALD) to improve water flux by increasing their hydrophilicity and reducing mass transfer resistance through membrane pore channels. The deposition of ZnO was systemically performed for 4–128 cycles of ALD at 170 °C. Analysis of membrane surface by contact angles (CA) measurements revealed that the hydrophilicity of the ZnO ALD membrane was enhanced with increasing the number of ALD cycles. It was observed that a vacuum-assisted ‘flow-through’ evaporation method had significantly higher efficacy in comparison to conventional desalination methods. By using the vacuum-assisted ‘flow-through’ technique, the water flux of the ZnO ALD membrane (~170 L m−2 h−1) was obtained, which is higher than uncoated pristine membranes (92 L m−2 h−1). It was also found that ZnO ALD membranes substantially improved water flux while keeping excellent salt rejection rate (>99.9%). Ultrasonic membrane cleaning had considerable effect on reducing the membrane fouling.


2013 ◽  
Vol 401-403 ◽  
pp. 563-566 ◽  
Author(s):  
Yu Han Li ◽  
Wei Jian Wang ◽  
Yu Fei Chen ◽  
Lei Wang

Containing pyrimidine and pyridine monomers were incorporated respectively into the main chain of a sulfonated polyimide in order to investigate the effect of nitrogen-containing heterocycles on membrane properties such as water uptake and proton conductivity. With increasing content of the nitrogen-containing heterocycles, water uptake of membranes and dimensional changes remarkable decrease. The copolymer showed higher thermal stability (desulfonation temperature up to 330 °C) and reasonable good mechanical properties. These membranes also showed higher proton conductivity, which was comparable or even higher than Nafion 117.


2020 ◽  
pp. 108128652097760
Author(s):  
Carlos Quesada ◽  
Claire Dupont ◽  
Pierre Villon ◽  
Anne-Virginie Salsac

A novel data-driven real-time procedure based on diffuse approximation is proposed to characterize the mechanical behavior of liquid-core microcapsules from their deformed shape and identify the mechanical properties of the submicron-thick membrane that protects the inner core through inverse analysis. The method first involves experimentally acquiring the deformed shape that a given microcapsule takes at steady state when it flows through a microfluidic microchannel of comparable cross-sectional size. From the mid-plane capsule profile, we deduce two characteristic geometric quantities that uniquely characterize the shape taken by the microcapsule under external hydrodynamic stresses. To identify the values of the unknown rigidity of the membrane and of the size of the capsule, we compare the geometric quantities with the values predicted numerically using a fluid-structure-interaction model by solving the three-dimensional capsule-flow interactions. The complete numerical data set is obtained off-line by systematically varying the governing parameters of the problem, i.e. the capsule-to-tube confinement ratio, and the capillary number, which is the ratio of the viscous to elastic forces. We show that diffuse approximation efficiently estimates the unknown mechanical resistance of the capsule membrane. We validate the data-driven procedure by applying it to the geometric and mechanical characterization of ovalbumin microcapsules (diameter of the order of a few tens of microns). As soon as the capsule is sufficiently deformed to exhibit a parachute shape at the rear, the capsule size and surface shear modulus are determined with an accuracy of 0.2% and 2.7%, respectively, as compared with 2–3% and 25% without it, in the best cases (Hu et al. Characterizing the membrane properties of capsules flowing in a square-section microfluidic channel: Effects of the membrane constitutive law. Phys Rev E 2013; 87(6): 063008). Diffuse approximation thus allows the capsule size and membrane elastic resistance to be provided quasi-instantly with very high precision. This opens interesting perspectives for industrial applications that require tight control of the capsule mechanical properties in order to secure their behavior when they transport active material.


2006 ◽  
Vol 290 (6) ◽  
pp. C1640-C1650 ◽  
Author(s):  
Chirag B. Khatiwala ◽  
Shelly R. Peyton ◽  
Andrew J. Putnam

Mechanical cues present in the ECM have been hypothesized to provide instructive signals that dictate cell behavior. We probed this hypothesis in osteoblastic cells by culturing MC3T3-E1 cells on the surface of type I collagen-modified hydrogels with tunable mechanical properties and assessed their proliferation, migration, and differentiation. On gels functionalized with a low type I collagen density, MC3T3-E1 cells cultured on polystyrene proliferated twice as fast as those cultured on the softest substrate. Quantitative time-lapse video microscopic analysis revealed random motility speeds were significantly retarded on the softest substrate (0.25 ± 0.01 μm/min), in contrast to maximum speeds on polystyrene substrates (0.42 ± 0.04 μm/min). On gels functionalized with a high type I collagen density, migration speed exhibited a biphasic dependence on ECM compliance, with maximum speeds (0.34 ± 0.02 μm/min) observed on gels of intermediate stiffness, whereas minimum speeds (0.24 ± 0.03 μm/min) occurred on both the softest and most rigid (i.e., polystyrene) substrates. Immature focal contacts and a poorly organized actin cytoskeleton were observed in cells cultured on the softest substrates, whereas those on more rigid substrates assembled mature focal adhesions and robust actin stress fibers. In parallel, focal adhesion kinase (FAK) activity (assessed by detecting pY397-FAK) was influenced by compliance, with maximal activity occurring in cells cultured on polystyrene. Finally, mineral deposition by the MC3T3-E1 cells was also affected by ECM compliance, leading to the conclusion that altering ECM mechanical properties may influence a variety of MC3T3-E1 cell functions, and perhaps ultimately, their differentiated phenotype.


2000 ◽  
Vol 19 (5) ◽  
pp. 409-420 ◽  
Author(s):  
David L. Christiansen ◽  
Eric K. Huang ◽  
Frederick H. Silver

Sign in / Sign up

Export Citation Format

Share Document