Distributed Adaptive Formation Control for Underactuated Quadrotors with Guaranteed Performances

Author(s):  
Xingling Shao ◽  
Xiaohui Yue ◽  
Jun Liu

Abstract This paper investigates a distributed adaptive formation control problem for underactuated quadrotors with guaranteed performances. To ensure a robust and stable formation pattern with predefined behavior bounds, by transforming the original constrained formation synchronization error dynamics into an equivalent unconstrained one, a prescribed performance mechanism is introduced in the translational loop to render the formation regulation as a prior. Based on the graph theory and Lyapunov stability analysis, a state estimator-based minimal learning parameter (SE-MLP) neuroadaptive consensus strategy is developed for follower quadrotors to achieve a distributed cooperative formation with prescribed tracking abilities via exchanging local information with neighbors. The presented control scheme has the following salient merits: 1) the formation synchronization errors can be guaranteed within pre-assigned bounds with desired transient behaviors despite of uncertain disturbances; 2) by using a state estimation error to update neural network (NN) parameters, rather than the tracking error that widely applied in traditional NN approximators, and with the help of MLP technique, the proposed SE-MLP observer capable of decreasing the computational complexity can achieve a fast identification of lumped disturbances without causing high-frequency oscillations even using a large adaptive gain, and the transient solutions of L 2 norm of the differential of neural weights are established to illustrate the mechanism of SE-MLP observer in reducing chattering behaviors. Simulation results are given to validate the efficiency of developed technique.

Author(s):  
Luis J. Ricalde ◽  
Edgar N. Sanchez ◽  
Alma Y. Alanis

This Chapter presents the design of an adaptive recurrent neural observer-controller scheme for nonlinear systems whose model is assumed to be unknown and with constrained inputs. The control scheme is composed of a neural observer based on Recurrent High Order Neural Networks which builds the state vector of the unknown plant dynamics and a learning adaptation law for the neural network weights for both the observer and identifier. These laws are obtained via control Lyapunov functions. Then, a control law, which stabilizes the tracking error dynamics is developed using the Lyapunov and the inverse optimal control methodologies . Tracking error boundedness is established as a function of design parameters.


Robotica ◽  
2019 ◽  
Vol 38 (11) ◽  
pp. 1984-2000 ◽  
Author(s):  
Bilal M. Yousuf ◽  
Abdul Saboor Khan ◽  
Aqib Noor

SUMMARYThis paper deals with the problem of the formation control of nonholonomic mobile robots in the leader–follower scenario without considering the leader information, as a result of its velocity and position. The kinematic model is reformulated as a formation model by incorporating the model uncertainties and external disturbance. The controller is presented in the two-step process. Firstly, the tracking problem is taken into consideration, which can be used as a platform to design a controller for the multi-agents. The proposed controller is designed based on a non-singular fast terminal sliding mode controller (FTSMC), which drives the tracking error to zero in finite time. It not only ensures the tracking but also handles the problem related to non-singularities. Moreover, the design control scheme is modified using high-gain observer to resolve the undefined fluctuations due to man-made errors in sensors. Secondly, the multi-agent tracking problem is considered; hence, a novel formation control is designed using FTSMC, which ensures the formation pattern as well as tracking. Furthermore, the obstacle avoidance algorithm is incorporated to avoid the collision, inside the region of interest. With the Lyapunov analysis, the stability of the proposed algorithm is verified. As a result, simulated graphs are shown to prove the efficacy of the proposed control scheme.


2020 ◽  
Vol 53 (3-4) ◽  
pp. 400-408 ◽  
Author(s):  
Hua Chen ◽  
Huilin Li ◽  
YiWen Yang ◽  
Lulu Chu

This paper deals with the fixed-time tracking control problem of extended nonholonomic chained-form systems with state observers. According to the structure characteristic of such chained-form systems, two subsystems are considered to design controllers, respectively. First of all, using the fixed-time control theory, a controller is proposed to make the first tracking error subsystem converge to zero in bounded time independent initial state. Second, a state observer is proposed to estimate the unmeasurable states of the second subsystem. And the precise state estimation can be presented from the observer within finite time; moreover, the upper bound of time is a constant independent on the initial estimation error. Third, a fixed-time controller is designed to drive all states of the second chained-form subsystem to zero within pre-calculated time. Finally, the effectiveness of the proposed control scheme is validated by simulation results.


2021 ◽  
Vol 11 (2) ◽  
pp. 546
Author(s):  
Jiajia Xie ◽  
Rui Zhou ◽  
Yuan Liu ◽  
Jun Luo ◽  
Shaorong Xie ◽  
...  

The high performance and efficiency of multiple unmanned surface vehicles (multi-USV) promote the further civilian and military applications of coordinated USV. As the basis of multiple USVs’ cooperative work, considerable attention has been spent on developing the decentralized formation control of the USV swarm. Formation control of multiple USV belongs to the geometric problems of a multi-robot system. The main challenge is the way to generate and maintain the formation of a multi-robot system. The rapid development of reinforcement learning provides us with a new solution to deal with these problems. In this paper, we introduce a decentralized structure of the multi-USV system and employ reinforcement learning to deal with the formation control of a multi-USV system in a leader–follower topology. Therefore, we propose an asynchronous decentralized formation control scheme based on reinforcement learning for multiple USVs. First, a simplified USV model is established. Simultaneously, the formation shape model is built to provide formation parameters and to describe the physical relationship between USVs. Second, the advantage deep deterministic policy gradient algorithm (ADDPG) is proposed. Third, formation generation policies and formation maintenance policies based on the ADDPG are proposed to form and maintain the given geometry structure of the team of USVs during movement. Moreover, three new reward functions are designed and utilized to promote policy learning. Finally, various experiments are conducted to validate the performance of the proposed formation control scheme. Simulation results and contrast experiments demonstrate the efficiency and stability of the formation control scheme.


Author(s):  
Shuzhen Diao ◽  
Wei Sun ◽  
Le Wang ◽  
Jing Wu

AbstractThis study considers the tracking control problem of the nonstrict-feedback nonlinear system with unknown backlash-like hysteresis, and a finite-time adaptive fuzzy control scheme is developed to address this problem. More precisely, the fuzzy systems are employed to approximate the unknown nonlinearities, and the design difficulties caused by the nonlower triangular structure are also overcome by using the property of fuzzy systems. Besides, the effect of unknown hysteresis input is compensated by approximating an intermediate variable. With the aid of finite-time stability theory, the proposed control algorithm could guarantee that the tracking error converges to a smaller region. Finally, a simulation example is provided to further verify the above theoretical results.


2021 ◽  
Vol 9 (7) ◽  
pp. 772
Author(s):  
Huixuan Fu ◽  
Shichuan Wang ◽  
Yan Ji ◽  
Yuchao Wang

This paper addressed the formation control problem of surface unmanned vessels with model uncertainty, parameter perturbation, and unknown environmental disturbances. A formation control method based on the control force saturation constraint and the extended state observer (ESO) was proposed. Compared with the control methods which only consider the disturbances from external environment, the method proposed in this paper took model uncertainties, parameter perturbation, and external environment disturbances as the compound disturbances, and the ESO was used to estimate and compensate for the disturbances, which improved the anti-disturbance performance of the controller. The formation controller was designed with the virtual leader strategy, and backstepping technique was designed with saturation constraint (SC) function to avoid the lack of force of the actuator. The stability of the closed-loop system was analyzed with the Lyapunov method, and it was proved that the whole system is uniformly and ultimately bounded. The tracking error can converge to arbitrarily small by choosing reasonable controller parameters. The comparison and analysis of simulation experiments showed that the controller designed in this paper had strong anti-disturbance and anti-saturation performance to the compound disturbances of vessels and can effectively complete the formation control.


2011 ◽  
Vol 216 ◽  
pp. 96-100
Author(s):  
Jing Jun Zhang ◽  
Wei Sha Han ◽  
Li Ya Cao ◽  
Rui Zhen Gao

A sliding mode controller for semi-active suspension system of a quarter car is designed with sliding model varying structure control method. This controller chooses Skyhook as a reference model, and to force the tracking error dynamics between the reference model and the plant in an asymptotically stable sliding mode. An equal near rate is used to improve the dynamic quality of sliding mode motion. Simulation result shows that the stability of performance of the sliding-mode controller can effectively improve the driving smoothness and safety.


2014 ◽  
Vol 631-632 ◽  
pp. 710-713 ◽  
Author(s):  
Xian Yong Wu ◽  
Hao Wu ◽  
Hao Gong

Anti-synchronization of two different chaotic systems is investigated. On the basis of Lyapunov theory, adaptive control scheme is proposed when system parameters are unknown, sufficient conditions for the stability of the error dynamics are derived, where the controllers are designed using the sum of the state variables in chaotic systems. Numerical simulations are performed for the Chen and Lu systems to demonstrate the effectiveness of the proposed control strategy.


2021 ◽  
Vol 01 (01) ◽  
pp. 2150001
Author(s):  
Jianye Gong ◽  
Yajie Ma ◽  
Bin Jiang ◽  
Zehui Mao

In this paper, the adaptive fault-tolerant formation tracking control problem for a set of heterogeneous unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) systems with actuator loss of effectiveness faults is investigated. The cooperative fault-tolerant formation control strategy for UAV and UGV collaborative systems is classified into the altitude consensus control scheme for follower UAVs and the position cooperative formation control scheme for all followers. The altitude consensus control algorithm is designed by utilizing backstepping control technique to drive all UAVs to a desired predefined height. Then, based on synchronization formation error information, the position cooperative formation control algorithm is proposed for all followers to reach the expected position and perform the desired formation configuration. The adaptive fault estimation term is adopted in the designed fault-tolerant formation control algorithm to compensate for the actuator loss of effectiveness fault. Finally, a simulation example is proposed to reveal the validity of the designed cooperative formation tracking control scheme.


Sign in / Sign up

Export Citation Format

Share Document