scholarly journals Identification and validation of miRNA reference genes in poplar under pathogen stress

Author(s):  
Lichun Zhang ◽  
Xiaoqian Yang ◽  
Yiyi Yin ◽  
Jinxing Wang ◽  
Yanwei Wang

Abstract Quantitative real time polymerase chain reaction (qRT-PCR) is a common method to analyze gene expression. Due to differences in RNA quantity, quality, and reverse transcription efficiency between qRT-PCR samples, reference genes are used as internal standards to normalize gene expression. However, few universal genes especially miRNAs have been identified as reference so far. Therefore, it is essential to identify reference genes that can be used across various experimental conditions, stress treatments, or tissues. In this study, 14 microRNAs (miRNAs) and 5.8S rRNA were assessed for expression stability in poplar trees infected with canker pathogen. Using three reference gene analysis programs, we found that miR156g and miR156a exhibited stable expression throughout the infection process. miR156g and miR156a were then tested as internal standards to measure the expression of miR1447 and miR171c, and the results were compared to small RNA sequencing (RNA-seq) data. We found that when miR156a was used as the reference gene, the expression of miR1447 and miR171c were consistent with the small RNA-seq expression profiles. Therefore, miR156a was the most stable miRNAs examined in this study, and could be used as a reference gene in poplar under canker pathogen stress, which should enable comprehensive comparisons of miRNAs expression and avoid the bias caused by different lenth between detected miRNAs and traditional referece genes. The present study has expanded the miRNA reference genes available for gene expression studies in trees under biotic stress.

2021 ◽  
Author(s):  
Young-Mi Lee ◽  
Soyeon In ◽  
Se-Joo Kim ◽  
Eun-Ji Won ◽  
Hayoung Cho ◽  
...  

Abstract Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), a primary approach for evaluating gene expression, requires an appropriate normalization strategy to rule out variations in gene expression among samples. The best option is to use a reference gene whose expression level is stable across various experimental conditions to compare the mRNA levels of a target gene. However, there is limited information on how the reference gene is differentially expressed at different ages (growth) in small invertebrates with notable changes such as molting. In this study, expression profiles of nine candidate reference genes from the brackish water flea, Diaphanosoma celebensis, were evaluated under diverse exposure to toxicants and according to growth. As a result, four different algorithms showed similar stabilities of genes for chemical exposures in the case of limited conditions using the same developmental stage (e.g., adult), while the results according to age showed a significantly different pattern in suite of candidate reference genes. This affected the results of genes EcRA and GST, which are involved in development and detoxification mechanisms, respectively. Our finding is the first step towards establishing a standardized real-time qRT-PCR analysis of this environmentally important invertebrate that has potential for aquatic ecotoxicology, particularly in estuarine environments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Young-Mi Lee ◽  
Hayoung Cho ◽  
Ryeo-Ok Kim ◽  
Soyeon In ◽  
Se-Joo Kim ◽  
...  

AbstractReal-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), a primary approach for evaluating gene expression, requires an appropriate normalization strategy to confirm relative gene expression levels by comparison, and rule out variations that might occur in analytical procedures. The best option is to use a reference gene whose expression level is stable across various experimental conditions to compare the mRNA levels of a target gene. However, there is limited information on how the reference gene is differentially expressed at different ages (growth) in small invertebrates with notable changes such as molting. In this study, expression profiles of nine candidate reference genes from the brackish water flea, Diaphanosoma celebensis, were evaluated under diverse exposure to toxicants and according to growth. As a result, four different algorithms showed similar stabilities of genes for chemical exposures in the case of limited conditions using the same developmental stage (H2A was stable, whereas Act was fairly unstable in adults), while the results according to age showed a significantly different pattern in suite of candidate reference genes. This affected the results of genes EcRA and GST, which are involved in development and detoxification mechanisms, respectively. Our finding is the first step towards establishing a standardized real-time qRT-PCR analysis of this environmentally important invertebrate that has potential for aquatic ecotoxicology, particularly in estuarine environments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Candice P. Chu ◽  
Shiguang Liu ◽  
Wenping Song ◽  
Ethan Y. Xu ◽  
Mary B. Nabity

AbstractDogs with X-linked hereditary nephropathy (XLHN) are an animal model for Alport syndrome in humans and progressive chronic kidney disease (CKD). Using mRNA sequencing (mRNA-seq), we have characterized the gene expression profile affecting the progression of XLHN; however, the microRNA (miRNA, miR) expression remains unknown. With small RNA-seq and quantitative RT-PCR (qRT-PCR), we used 3 small RNA-seq analysis tools (QIAGEN OmicSoft Studio, miRDeep2, and CPSS 2.0) to profile differentially expressed renal miRNAs, top-ranked miRNA target genes, and enriched biological processes and pathways in CKD progression. Twenty-three kidney biopsies were collected from 5 dogs with XLHN and 4 age-matched, unaffected littermates at 3 clinical time points (T1: onset of proteinuria, T2: onset of azotemia, and T3: advanced azotemia). We identified up to 23 differentially expressed miRNAs at each clinical time point. Five miRNAs (miR-21, miR-146b, miR-802, miR-142, miR-147) were consistently upregulated in affected dogs. We identified miR-186 and miR-26b as effective reference miRNAs for qRT-PCR. This study applied small RNA-seq to identify differentially expressed miRNAs that might regulate critical pathways contributing to CKD progression in dogs with XLHN.


2021 ◽  
Author(s):  
Michihito Deguchi ◽  
Shobha Potlakayala ◽  
Zachary Spuhler ◽  
Hannah George ◽  
Vijay Sheri ◽  
...  

Abstract Industrial hemp (Cannabis sativa L.) is a dioecious crop widely known for its production of phytocannabinoids, flavonoids, and terpenes. In the past two years since its legalization, there has been significant interest in researching this important crop for pharmaceutical applications. Although many scientific reports have demonstrated gene expression analysis of hemp through OMICs approaches, accurate validation of omics data cannot be performed because of lack of reliable reference genes for normalization of qRT-PCR data. The differential gene expression patterns of 13 candidate reference genes under osmotic, heavy metal, hormonal, and UV stress were evaluated through four software packages: geNorm, NormFinder, BestKeeper, and RefFinder. The EF-1a ranked as the most stable reference gene across all stresses, TUB was the most stable under osmotic stress, and TATA was the most stable under both heavy metal and hormonal stress. The expression profiles of two cannabinoid pathway genes, AAE1 and THCAS, using the two most stable and single least stable reference genes confirmed that two most stables genes were apt for normalization of gene expression data. This work will contribute to the future studies on the expression analysis of hemp genes regulating the synthesis, transport and accumulation of secondary metabolites.


2020 ◽  
Author(s):  
Qiang Song ◽  
Man Huang ◽  
Guicheng Wu ◽  
Lu Dou ◽  
Wenjin Zhang ◽  
...  

Abstract Background Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is the most sensitive technique for evaluating gene expression levels. Choosing appropriate reference genes (RGs) is critical for normalizing and evaluating changes in the expression of target genes. However, uniform and reliable RGs for breast cancer research have not been identified, limiting the value of target gene expression studies. Here, we provide a novel approach for mining RGs by using the RNA-seq dataset to identify reliable and accurate RGs that can be applied to different types of breast cancer tissues and cell lines. Methods First, we compiled the transcriptome profiling data from the TCGA database involving 1217 samples to identify novel RGs and then ten genes (SF1, TARDBP, THRAP3, QRICH1, TRA2B, SRSF3, YY1, DNAJC8, RNF10, and RHOA) with relatively stable expression levels were chosen as novel candidate RGs. Additionally, six conventional RGs (ACTB, TUBA1A, RPL13A, B2M, GAPDH, and GUSB) were also selected. To determine and validate the optimal RGs we performed qRT-PCR experiments on 87 samples from 5 types of surgically excised breast tumor specimens including HR+HER2-, HR+HER2+, HR-HER2-, HR-HER2+, breast cancer after neoadjuvant chemotherapy (NAC) and their matched para-carcinoma tissues, furthermore, we also included a benign breast tumor sample. Six biological replicates were included for each tissue. Moreover, we assessed 7 breast cancer cell lines (MCF-10A, MCF-7, T-47D, MDA-MB-231, MDA-MB-468, as well as MDA-MB-231 with either CNR2 knockdown or overexpression; 3 biological replicates for each line). Five statistical algorithms (geNorm, NormFinder, ΔCt method, BestKeeper, and ComprFinder) were used to assess the stability of expression of each RG across all breast cancer tissues and cell lines. Results Our results show that RG combinations SF1+TRA2B+THRAP3 and THRAP3+RHOA+QRICH1 showed stable expression in breast cancer tissues and cell lines, respectively, and that these two combinations displayed good interchangeability. Therefore, we propose that the above two combinations are optimal triplet RGs for breast cancer research. Conclusions In summary, we identified novel and reliable RG combinations for breast cancer research based on a public RNA-seq dataset which lays a solid foundation for accurate normalization of qRT-PCR results across different breast cancer tissues and cells.


2018 ◽  
Author(s):  
Cao Ai Ping ◽  
Shao Dong Nan ◽  
Cui Bai Ming ◽  
Zheng Yin Ying ◽  
Sun jie

Analysis of gene expression level by RNA sequencing (RNA-seq ) has a wide range of biological purposes in various species. Real-time fluorescent quantitative PCR (qRT-PCR) evaluated gene expression levels and validated transcriptomic, which will depend on the stably expressed reference genes for normalization of the gene expression level under specific situations. In this study, 15 candidate genes were selected from transcriptome datasets during somatic embryogenesis (SE) initial dedifferentiation in Gossypium hirsutum L. of different SE capability. To evaluate the stability of those genes, geNorm, NormFinder and BestKeeper were used. The results revealed that ENDO4 and 18srRNA could be as appropriate reference genes under all conditions. The stability and reliability of the reference genes were further tested through comparison of qRT-PCR results and RNA-seq data, as well as evaluation of the expression profiles of auxin-responsive protein (AUX22) and ethylene-responsive transcription factor (ERF17). In summary, the results of our study indicate the most suitable reference genes for qRT-PCR during three induction stages in four cotton species.


Crustaceana ◽  
2018 ◽  
Vol 91 (10) ◽  
pp. 1195-1210 ◽  
Author(s):  
Yabo Fang ◽  
Le Diao ◽  
Fengying Zhang ◽  
Lingbo Ma ◽  
Mengdi Zhao ◽  
...  

Abstract The quantitative real-time transcription-polymerase chain reaction (qRT-PCR) is now used widely in studies about mRNA expression levels. The selection of one or more stable reference gene(s) used for data normalization is substantial. In this study, expression levels of eleven candidate reference genes (β-actin, 16S rRNA, 18S rRNA, 28S rRNA, α-I tubulin, GAPDH, ribosomal protein L13, elongation factor 1 α, elongation factor 2, arginine kinase and ubiquitin) were examined using the GenomeLab GeXP analysis system (Beckman Coulter). Gene expression data were analysed using two different statistical models: geNorm and NormFinder. (1) In six different tissues (hepatopancreas, haemocytes, heart, gill, muscle, and testis) from the mud crab, Scylla paramamosain, 18S rRNA and elongation factor 1 α were identified as the two best reference genes. (2) In the haemocytes after being challenged by Vibro parahaemolyticus, the result suggested that ubiquitin was the most stable gene after the treatment. 18S rRNA, elongation factor 1 α and ubiquitin are herein recommended as the best combination. These results provide useful options for reference gene selection under different experimental conditions in qRT-PCR studies in the mud crab.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaoli Tang ◽  
Hongyan Wang ◽  
Chuyang Shao ◽  
Hongbo Shao

Kosteletzkya virginica(L.) is a newly introduced perennial halophytic plant. Presently, reverse transcription quantitative real-time PCR (qPCR) is regarded as the best choice for analyzing gene expression and its accuracy mainly depends on the reference genes which are used for gene expression normalization. In this study, we employed qPCR to select the most stable reference gene inK. virginicawhich showed stable expression profiles under our experimental conditions. The candidate reference genes were 18S ribosomal RNA (18SrRNA),β-actin (ACT),α-tubulin (TUA), and elongation factor (EF). We tracked the gene expression profiles of the candidate genes and analyzed their stabilities through BestKeeper, geNorm, and NormFinder software programs. The results of the three programs were identical and18SrRNAwas assessed to be the most stable reference gene in this study. However,TUAwas identified to be the most unstable. Our study proved again that the traditional reference genes indeed displayed a certain degree of variations under given experimental conditions. Importantly, our research also provides guidance for selecting most suitable reference genes and lays the foundation for further studies inK. virginica.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zheng Wang ◽  
Qianqian Meng ◽  
Xi Zhu ◽  
Shiwei Sun ◽  
Aiqin Liu ◽  
...  

Abstract Diaphania caesalis (Walker) is an important boring insect mainly distributed in subtropical and tropical areas and attacked tropical woody grain crops, such as starchy plants of Artocarpus. Quantitative real-time polymerase chain reaction (qRT-PCR) is a powerful approach for investigating target genes expression profiles at the transcriptional level. However, the identification and selection of internal reference genes, which is often overlooked, is the most vital step before the analysis of target gene expression by qRT-PCR. So far, the reliable internal reference genes under a certain condition of D. caesalis have not been investigated. Therefore, this study evaluated the expression stability of eight candidate reference genes including ACT, β-TUB, GAPDH, G6PDH, RPS3a, RPL13a, EF1α, and EIF4A in different developmental stages, tissues and sexes using geNorm, NormFinder and BestKeeper algorithms. To verify the stability of the recommended internal reference genes, the expression levels of DcaeOBP5 were analyzed under different treatment conditions. The results indicated that ACT, RPL13a, β-TUB, RPS3a, and EF1α were identified as the most stable reference genes for further studies on target gene expression involving different developmental stages of D. caesalis. And ACT and EIF4A were recommended as stable reference genes for different tissues. Furthermore, ACT, EF1α, and RPS3a were ranked as the best reference genes in different sexes based on three algorithms. Our research represents the critical first step to normalize qRT-PCR data and ensure the accuracy of expression of target genes involved in phylogenetic and physiological mechanism at the transcriptional level in D. caesalia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min-dong Chen ◽  
Bin Wang ◽  
Yong-ping Li ◽  
Mei-juan Zeng ◽  
Jian-ting Liu ◽  
...  

AbstractSelecting suitable internal reference genes is an important prerequisite for the application of quantitative real-time PCR (qRT-PCR). However, no systematic studies have been conducted on reference genes in luffa. In this study, seven reference genes were selected, and their expression levels in luffa plants exposed to various simulated abiotic stresses [i.e., cold, drought, heat, salt, H2O2, and abscisic acid (ABA) treatments] were analyzed by qRT-PCR. The stability of the reference gene expression levels was validated using the geNorm, NormFinder, BestKeeper, and RefFinder algorithms. The results indicated that EF-1α was the most stably expressed and suitable reference gene overall and for the heat, cold, and ABA treatments. Additionally, UBQ expression was stable following the salt treatment, whereas TUB was identified as a suitable reference gene for H2O2 and drought treatments. The reliability of the selected reference genes was verified by analyzing the expression of copper/zinc superoxide dismutase (Cu/Zn-SOD) gene in luffa. When the most unstable reference genes were used for data normalizations, the resulting expression patterns had obvious biases when compared with the expression patterns for the most ideal reference genes used alone or combined. These results will be conducive to more accurate quantification of gene expression levels in luffa.


Sign in / Sign up

Export Citation Format

Share Document