scholarly journals Activated carbon from agave wastes (agave tequilana) for supercapacitors via potentiostatic floating test

Author(s):  
Isi Keyla Rangel-Heredia ◽  
Luis Carlos Torres-González ◽  
Eduardo Maximiano Sánchez-Cervantes ◽  
Lorena Leticia Garza-Tovar

Abstract To prepare an efficient supercapacitor, an activated carbon from agave wastes was prepared and their electrochemical performance was evaluated as a novel electrode for supercapacitor. The carbon was prepared by two thermal pyrolysis processes under nitrogen atmosphere. The first pyrolysis was achieved at 500°C until the charring of the bagasse, in the second pyrolysis step, the char was impregnated with different mass ratios of KOH (1:2 − 1:4) and thermally treated at 800 or 900°C, for 1 h under N2 flow. The textural analysis showed that the activated carbon had a specific surface area of 1462 m2 g− 1 and depicted a type I isotherm (IUPAC) characteristic of a microporous carbon. Raman spectroscopy and XRD measurements confirm that the activated carbon contains a small graphitization degree and a disordered structure. The electrochemical study of the symmetric carbon supercapacitor was carried out in 1M Li2SO4 solution as the electrolyte. The electrochemical performance of the coin cell supercapacitor was evaluated under an accelerated ageing floating test consisting of potentiostatic steps at different voltages (1.5, 1.6 and 1.8 V) for 10 h followed by galvanostatic charge/discharge sequences, the overall procedure summarized a floating time up to 200 h. The highest capacitance was observed at a floating voltage of 1.5 V, with a large initial specific capacitance of 297 F g− 1.

2021 ◽  
Author(s):  
Kyu Seok Lee ◽  
Ye Ji Seo ◽  
Hyeon Taek Jeong

AbstractIn this study, we investigated that the activated carbon (AC)-based supercapacitor and introduced SIFSIX-3-Ni as a porous conducting additive to increase its electrochemical performances of AC/SIFSIX-3-Ni composite-based supercapacitor. The AC/SIFSIX-3-Ni composites are coated onto the aluminum substrate using the doctor blade method and conducted an ion-gel electrolyte to produce a symmetrical supercapacitor. The electrochemical properties of the AC/SIFSIX-3-Ni composite-based supercapacitor are evaluated through cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge tests (GCD). The AC/SIFSIX-3-Ni composite-based supercapacitor showed reasonable capacitive behavior in various electrochemical measurements, including CV, EIS, and GCD. The highest specific capacitance of the AC/SIFSIX-3-Ni composite-based supercapacitor was 129 F g−1 at 20 mV s−1.


2007 ◽  
Vol 611 (1-2) ◽  
pp. 225-231 ◽  
Author(s):  
Chun-Ling Liu ◽  
Wen-Sheng Dong ◽  
Gao-Ping Cao ◽  
Jing-Ren Song ◽  
Lang Liu ◽  
...  

2014 ◽  
Vol 989-994 ◽  
pp. 316-319 ◽  
Author(s):  
Jing Zhu ◽  
Yong Guang Liu ◽  
Qing Qing Tian ◽  
Ling Wang ◽  
Ji Lin Cao

Li0.95Na0.05Ti2(PO4)3/C nanocomposite was prepared by sol-gel method.The structure and morphology of the samples were characterized by XRD, SEM which showed the particles had typical NASICON structure and diameter range from 400~500nm. The electrochemical performance were tested by cyclic voltammetry and galvanostatic charge–discharge. Results show Li0.95Na0.05Ti2(PO4)3/C nanocomposite exhibitsmuch better electrochemical performance than bare Li0.95Na0.05Ti2(PO4)3.


2018 ◽  
Vol 10 (11) ◽  
pp. 3979 ◽  
Author(s):  
Azubuike Anene ◽  
Siw Fredriksen ◽  
Kai Sætre ◽  
Lars-Andre Tokheim

Thermal and catalytic pyrolysis of virgin low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP) and mixtures of LDPE/PP were carried out in a 200 mL laboratory scale batch reactor at 460 °C in a nitrogen atmosphere. Thermogravimetric analysis (TGA) was carried out to study the thermal and catalytic degradation of the polymers at a heating rate of 10 °C/min. The amount of PP was varied in the LDPE/PP mixture to explore its effect on the reaction. In thermal degradation (TGA) of LDPE/PP blends, a lower decomposition temperature was observed for LDPE/PP mixtures compared to pure LDPE, indicating interaction between the two polymer types. In the presence of a catalyst (CAT-2), the degradation temperatures for the pure polymers were reduced. The TGA results were validated in a batch reactor using PP and LDPE, respectively. The result from thermal pyrolysis showed that the oil product contained significant amounts of hydrocarbons in the ranges of C7–C12 (gasoline range) and C13–C20 (diesel range). The catalyst enhanced cracking at lower temperatures and narrowed the hydrocarbon distribution in the oil towards the lower molecular weight range (C7–C12). The result suggests that the oil produced from catalytic pyrolysis of waste plastics has a potential as an alternative fuel.


Author(s):  
S. Manocha ◽  
Parth Joshi ◽  
Amit Brahmbhatt ◽  
Amiya Banerjee ◽  
Snehasis Sahoo ◽  
...  

In the present work, a one step carbon activation process was developed by stabilized poly-blend. It is carbonized in nitrogen atmosphere and activated in steam in one step for known interval of times to enhance the surface area and develop interconnected porosity. The weight-loss behavior during steam activation of stabilized poly-blend at different temperatures, surface area and pore size distribution were studied to identify the optimum synthesis parameters. The results of surface characteristics were compared with those of activated carbon prepared by carbonization and activation in two steps. It was found that activation temperature has profound effect on surface characteristics. As activation temperature was raised from 800 °C to 1150 °C, surface area of activated carbon increased about three times. In addition to surface area, average pore diameter also increases with increasing activation temperature. Thus, activated carbon with high percentage of porosity and surface area can be developed by controlling the activation temperature during activation process.


Author(s):  
Ali H. Jawad ◽  
Ahmed Saud Abdulhameed ◽  
Noor Nazihah Bahrudin ◽  
Nurul Nadiah Mohd Firdaus Hum ◽  
S. N. Surip ◽  
...  

Abstract In this work, sugarcane bagasse waste (SBW) was used as a lignocellulosic precursor to develop a high surface area activated carbon (AC) by thermal treatment of the SBW impregnated with KOH. This sugarcane bagasse waste activated carbon (SBWAC) was characterized by means of crystallinity, porosity, surface morphology and functional groups availability. The SBWAC exhibited Type I isotherm which corresponds to microporosity with high specific surface area of 709.3 m2/g and 6.6 nm of mean pore diameter. Further application of SBWAC as an adsorbent for methylene blue (MB) dye removal demonstrated that the adsorption process closely followed the pseudo-second order kinetic and Freundlich isotherm models. On the other hand, thermodynamic study revealed the endothermic nature and spontaneity of MB dye adsorption on SBWAC with high acquired adsorption capacity (136.5 mg/g). The MB dye adsorption onto SBWAC possibly involved electrostatic interaction, H-bonding and π-π interaction. This work demonstrates SBW as a potential lignocellulosic precursor to produce high surface area AC that can potentially remove more cationic dyes from the aqueous environment.


Sign in / Sign up

Export Citation Format

Share Document