scholarly journals Wild apple-associated fungi and bacteria compete to colonize the larval gut of an invasive wood-borer Agrilus mali in Tianshan forests

Author(s):  
Tohir Bozorov ◽  
Zokir Toshmatov ◽  
Gulnaz Kahar ◽  
Daoyuan Zhang ◽  
Hua Shao ◽  
...  

Abstract Background: The gut microflora of insects plays important roles throughout their lives. Different foods and geographic locations change gut bacterial communities. The invasive wood-borer Agrilus mali causes extensive mortality of wild apple, Malus sieversii, which is considered a progenitor of all cultivated apples, in Tianshan forests. Recent analysis showed that the gut microbiota of larvae collected from Tianshan forests showed rich bacterial diversity but the absence of fungal species. In this study, we explored the antagonistic ability of gut bacteria to address this absence of fungi in the larval gut. Results: The results demonstrated that gut bacteria were able to selectively inhibit wild apple tree-associated fungi. However, Pseudomonas synxantha showed strong antagonistic ability, producing antifungal compounds. Using different analytical methods, such as column chromatography, mass spectrometry, HPLC and NMR, an antifungal compound, phenazine-1-carboxylic acid (PCA), was identified. Activity of the compound was determined by the minimum inhibitory concentration method and electron microscopy. Moreover, sequence alignment and cluster analysis showed that gut bacteria could originate from noninfested apple microflora during infestation. Conclusions: Overall, the results showed that in newly invaded locations, A. mali larvae changed their gut microbiota and adopted new gut bacteria that prevented fungal colonization in the gut.

2021 ◽  
Vol 12 ◽  
Author(s):  
Tohir A. Bozorov ◽  
Zokir O. Toshmatov ◽  
Gulnaz Kahar ◽  
Daoyuan Zhang ◽  
Hua Shao ◽  
...  

The gut microflora of insects plays important roles throughout their lives. Different foods and geographic locations change gut bacterial communities. The invasive wood-borer Agrilus mali causes extensive mortality of wild apple, Malus sieversii, which is considered a progenitor of all cultivated apples, in Tianshan forests. Recent analysis showed that the gut microbiota of larvae collected from Tianshan forests showed rich bacterial diversity but the absence of fungal species. In this study, we explored the antagonistic ability of the gut bacteria to address this absence of fungi in the larval gut. The results demonstrated that the gut bacteria were able to selectively inhibit wild apple tree-associated fungi. Among them, Pseudomonas synxantha showed strong antagonistic ability, producing antifungal compounds. Using different analytical methods, such as column chromatography, mass spectrometry, HPLC, and NMR, an antifungal compound, phenazine-1-carboxylic acid (PCA), was identified. Activity of the compound was determined by the minimum inhibitory concentration method and electron microscopy. Moreover, our study showed that the gut bacteria could originate from noninfested apple microflora during infestation. Overall, the results showed that in newly invaded locations, A. mali larvae changed their gut microbiota and adopted new gut bacteria that prevented fungal colonization in the gut.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 2029
Author(s):  
Kouya Hattori ◽  
Masahiro Akiyama ◽  
Natsumi Seki ◽  
Kyosuke Yakabe ◽  
Koji Hase ◽  
...  

While poorly-absorbed sugar alcohols such as sorbitol are widely used as sweeteners, they may induce diarrhea in some individuals. However, the factors which determine an individual’s susceptibility to sugar alcohol-induced diarrhea remain unknown. Here, we show that specific gut bacteria are involved in the suppression of sorbitol-induced diarrhea. Based on 16S rDNA analysis, the abundance of Enterobacteriaceae bacteria increased in response to sorbitol consumption. We found that Escherichia coli of the family Enterobacteriaceae degraded sorbitol and suppressed sorbitol-induced diarrhea. Finally, we showed that the metabolism of sorbitol by the E. coli sugar phosphotransferase system helped suppress sorbitol-induced diarrhea. Therefore, gut microbiota prevented sugar alcohol-induced diarrhea by degrading sorbitol in the gut. The identification of the gut bacteria which respond to and degrade sugar alcohols in the intestine has implications for microbiome science, processed food science, and public health.


2013 ◽  
Vol 65 (3) ◽  
pp. 955-962 ◽  
Author(s):  
Milica Ljaljevic-Grbic ◽  
M. Stupar ◽  
Jelena Vukojevic ◽  
Ivana Maricic ◽  
Natasa Bungur

Pieces of art stored in museum depots and display rooms are subject to fungal colonization that leads to bio-deterioration processes. Deteriorated wooden sculptures and art photographs temporarily stored in the quarantine room of the Cultural Center of Belgrade were subject to mycological analyses. Twelve fungal species were identified on the wooden substratum and five species were detected on photograph surfaces. Trichoderma viride, Chaetomium globosum and Alternaria sp. were the fungi with proven cellulolytic activity detected on the examined cellulose substrata. Indoor air mycobiota were estimated to 210.09 ? 8.06 CFU m-3, and the conidia of fungus Aspergillus niger were the dominant fungal propagules in the air of the examined room.


mSphere ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Yu Chen ◽  
Hui Fang ◽  
Chunyan Li ◽  
Guojun Wu ◽  
Ting Xu ◽  
...  

Gut microbiota may contribute to the pathogenesis and development of autism spectrum disorder. The maternal gut microbiota influences offspring gut microbial structure and composition.


2016 ◽  
Vol 2 (1) ◽  
Author(s):  
Sandrine P Claus ◽  
Hervé Guillou ◽  
Sandrine Ellero-Simatos

Abstract Exposure to environmental chemicals has been linked to various health disorders, including obesity, type 2 diabetes, cancer and dysregulation of the immune and reproductive systems, whereas the gastrointestinal microbiota critically contributes to a variety of host metabolic and immune functions. We aimed to evaluate the bidirectional relationship between gut bacteria and environmental pollutants and to assess the toxicological relevance of the bacteria–xenobiotic interplay for the host. We examined studies using isolated bacteria, faecal or caecal suspensions—germ-free or antibiotic-treated animals—as well as animals reassociated with a microbiota exposed to environmental chemicals. The literature indicates that gut microbes have an extensive capacity to metabolise environmental chemicals that can be classified in five core enzymatic families (azoreductases, nitroreductases, β-glucuronidases, sulfatases and β-lyases) unequivocally involved in the metabolism of >30 environmental contaminants. There is clear evidence that bacteria-dependent metabolism of pollutants modulates the toxicity for the host. Conversely, environmental contaminants from various chemical families have been shown to alter the composition and/or the metabolic activity of the gastrointestinal bacteria, which may be an important factor contributing to shape an individual’s microbiotype. The physiological consequences of these alterations have not been studied in details but pollutant-induced alterations of the gut bacteria are likely to contribute to their toxicity. In conclusion, there is a body of evidence suggesting that gut microbiota are a major, yet underestimated element that must be considered to fully evaluate the toxicity of environmental contaminants.


2019 ◽  
Vol 7 (2) ◽  
pp. 41 ◽  
Author(s):  
Shanthi Parkar ◽  
Andries Kalsbeek ◽  
James Cheeseman

This article reviews the current evidence associating gut microbiota with factors that impact host circadian-metabolic axis, such as light/dark cycles, sleep/wake cycles, diet, and eating patterns. We examine how gut bacteria possess their own daily rhythmicity in terms of composition, their localization to intestinal niches, and functions. We review evidence that gut bacteria modulate host rhythms via microbial metabolites such as butyrate, polyphenolic derivatives, vitamins, and amines. Lifestyle stressors such as altered sleep and eating patterns that may disturb the host circadian system also influence the gut microbiome. The consequent disruptions to microbiota-mediated functions such as decreased conjugation of bile acids or increased production of hydrogen sulfide and the resultant decreased production of butyrate, in turn affect substrate oxidation and energy regulation in the host. Thus, disturbances in microbiome rhythms may at least partially contribute to an increased risk of obesity and metabolic syndrome associated with insufficient sleep and circadian misalignment. Good sleep and a healthy diet appear to be essential for maintaining gut microbial balance. Manipulating daily rhythms of gut microbial abundance and activity may therefore hold promise for a chrononutrition-based approach to consolidate host circadian rhythms and metabolic homeorhesis.


2015 ◽  
Vol 53 (9) ◽  
pp. 2900-2907 ◽  
Author(s):  
Rolf Kramer ◽  
Annette Sauer-Heilborn ◽  
Tobias Welte ◽  
Carlos A. Guzman ◽  
Wolf-Rainer Abraham ◽  
...  

The respiratory mycobiome is an important but understudied component of the human microbiota. Like bacteria, fungi can cause severe lung diseases, but their infection rates are much lower. This study compared the bacterial and fungal communities of sputum samples from a large cohort of 56 adult patients with cystic fibrosis (CF) during nonexacerbation periods and under continuous antibiotic treatment. Molecular fingerprinting based on single-strand conformation polymorphism (SSCP) analysis revealed fundamental differences between bacterial and fungal communities. Both groups of microorganisms were taxonomically classified by identification of gene sequences (16S rRNA and internal transcript spacer), and prevalences of single taxa were determined for the entire cohort. Major bacterial pathogens were frequently observed, whereas fungi of known pathogenicity in CF were detected only in low numbers. Fungal species richness increased without reaching a constant level (saturation), whereas bacterial richness showed saturation after 50 patients were analyzed. In contrast to bacteria, a large number of fungal species were observed together with high fluctuations over time and among patients. These findings demonstrated that the mycobiome was dominated by transient species, which strongly suggested that the main driving force was their presence in inhaled air rather than colonization. Considering the high exposure of human airways to fungal spores, we concluded that fungi have low colonization abilities in CF, and colonization by pathogenic fungal species may be considered a rare event. A comprehensive understanding of the conditions promoting fungal colonization may offer the opportunity to prevent colonization and substantially reduce or even eliminate fungus-related disease progression in CF.


mBio ◽  
2012 ◽  
Vol 3 (6) ◽  
Author(s):  
Baoyu Tian ◽  
Nibal H. Fadhil ◽  
J. Elijah Powell ◽  
Waldan K. Kwong ◽  
Nancy A. Moran

ABSTRACT Antibiotic treatment can impact nontarget microbes, enriching the pool of resistance genes available to pathogens and altering community profiles of microbes beneficial to hosts. The gut microbiota of adult honeybees, a distinctive community dominated by eight bacterial species, provides an opportunity to examine evolutionary responses to long-term treatment with a single antibiotic. For decades, American beekeepers have routinely treated colonies with oxytetracycline for control of larval pathogens. Using a functional metagenomic screen of bacteria from Maryland bees, we detected a high incidence of tetracycline/oxytetracycline resistance. This resistance is attributable to known resistance loci for which nucleotide sequences and flanking mobility genes were nearly identical to those from human pathogens and from bacteria associated with farm animals. Surveys using diagnostic PCR and sequencing revealed that gut bacteria of honeybees from diverse localities in the United States harbor eight tetracycline resistance loci, including efflux pump genes (tetB, tetC, tetD, tetH, tetL, and tetY) and ribosome protection genes (tetM and tetW), often at high frequencies. Isolates of gut bacteria from Connecticut bees display high levels of tetracycline resistance. Resistance genes were ubiquitous in American samples, though rare in colonies unexposed for 25 years. In contrast, only three resistance loci, at low frequencies, occurred in samples from countries not using antibiotics in beekeeping and samples from wild bumblebees. Thus, long-term antibiotic treatment has caused the bee gut microbiota to accumulate resistance genes, drawn from a widespread pool of highly mobile loci characterized from pathogens and agricultural sites. IMPORTANCE We found that 50 years of using antibiotics in beekeeping in the United States has resulted in extensive tetracycline resistance in the gut microbiota. These bacteria, which form a distinctive community present in healthy honeybees worldwide, may function in protecting bees from disease and in providing nutrition. In countries that do not use antibiotics in beekeeping, bee gut bacteria contained far fewer resistance genes. The tetracycline resistance that we observed in American samples reflects the capture of mobile resistance genes closely related to those known from human pathogens and agricultural sites. Thus, long-term treatment to control a specific pathogen resulted in the accumulation of a stockpile of resistance capabilities in the microbiota of a healthy gut. This stockpile can, in turn, provide a source of resistance genes for pathogens themselves. The use of novel antibiotics in beekeeping may disrupt bee health, adding to the threats faced by these pollinators.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Jean-Christophe Marvaud ◽  
Thierry Lambert

ABSTRACT Clostridium bolteae, which belongs to the Clostridium clostridioforme complex, is a member of the human gut microbiota. Recent analysis of seven genomes of C. bolteae revealed the presence of an arr-like gene. Among these strains, only 90A7 was found to be resistant to rifampin in the absence of alteration of RpoB. Cloning of arr-cb from 90A7 in Escherichia coli combined with directed mutagenesis demonstrated that Arr-cb was functional but that a Q127→R variant present in 90A9 and 90B3 was inactive. Quantitative reverse transcription-PCR analysis indicated that arr-cb was silent in the four remaining strains because of defective transcription. Thus, two independent mechanisms can make the probably intrinsic arr-cb gene of C. bolteae cryptic.


2006 ◽  
Vol 72 (9) ◽  
pp. 6079-6087 ◽  
Author(s):  
A. Franks ◽  
S. Egan ◽  
C. Holmstr�m ◽  
S. James ◽  
H. Lappin-Scott ◽  
...  

ABSTRACT The marine epiphytic bacterium Pseudoalteromonas tunicata produces a range of extracellular secondary metabolites that inhibit an array of common fouling organisms, including fungi. In this study, we test the hypothesis that the ability to inhibit fungi provides P. tunicata with an advantage during colonization of a surface. Studies on a transposon-generated antifungal-deficient mutant of P. tunicata, FM3, indicated that a long-chain fatty acid-coenzyme A ligase is involved in the production of a broad-range antifungal compound by P. tunicata. Flow cell experiments demonstrated that production of an antifungal compound provided P. tunicata with a competitive advantage against a marine yeast isolate during surface colonization. This compound enabled P. tunicata to disrupt an already established fungal biofilm by decreasing the number of yeast cells attached to the surface by 66% � 9%. For in vivo experiments, the wild-type and FM3 strains of P. tunicata were used to inoculate the surface of the green alga Ulva australis. Double-gradient denaturing gradient gel electrophoresis analysis revealed that after 48 h, the wild-type P. tunicata had outcompeted the surface-associated fungal community, whereas the antifungal-deficient mutant had no effect on the fungal community. Our data suggest that P. tunicata is an effective competitor against fungal surface communities in the marine environment.


Sign in / Sign up

Export Citation Format

Share Document