Variability of gait spatio-temporal parameters during treadmill walking

Author(s):  
Miroslaw Latka ◽  
Klaudia Kozlowska ◽  
Bruce J. West

Abstract During treadmill walking, the subject’s stride length (SL) and duration (ST) yield a stride speed (SS) which fluctuates over a narrow range centered on the treadmill belt’s speed. We recently demonstrated that ST and SL trends are strongly correlated and serve as control manifolds about which the corresponding gait parameters fluctuate. The fundamental problem, which has not yet been investigated, concerns the contribution of SL and ST fluctuations to SS variability. To investigate this relation, we approximate SS variance by the linear combination of SL variance and ST variance, as well as their covariance. The combination coefficients are nonlinear functions of ST and SL mean values and, consequently, depend on treadmill speed. The approximation applies to constant speed treadmill walking and walking on a treadmill whose belt speed is perturbed by strong, high-frequency noise. In the first case, up to 80% of stride speed variance comes from SL fluctuations. In the presence of perturbations, the SL contribution decreases with increasing speed, but its lowest value is still twice as large as that of either ST variance or SL-ST covariance. The presented evidence supports the hypothesis that stride length adjustments are primarily responsible for speed maintenance during walking. Such a control strategy is evolutionarily advantageous due to the weak speed dependence of the SL contribution to SS variance. The ability to maintain speed close to that of a moving cohort did increase the chance of an individual’s survival throughout most of human evolution.

2019 ◽  
Author(s):  
Klaudia Kozlowska ◽  
Miroslaw Latka ◽  
Bruce J. West

AbstractTrends in time series generated by physiological control systems are ubiquitous. Determining whether trends arise from intrinsic system dynamics or originate outside of the system is a fundamental problem of fractal series analysis. In the latter case, it is necessary to filter out the trends before attempting to quantify correlations in the noise (residuals). For over two decades, detrended fluctuation analysis (DFA) has been used to calculate scaling exponents of stride time (ST), stride length (SL), and stride speed (SS) of human gait. Herein, rather than relying on the very specific form of detrending characteristic of DFA, we adopt Multivariate Adaptive Regression Splines (MARS) to explicitly determine trends in spatio-temporal gait parameters during treadmill walking. Then, we use the madogram estimator to calculate the scaling exponent of the corresponding MARS residuals. The durations of ST and SL trends are determined to be independent of treadmill speed and have distributions with exponential tails. At all speeds considered, the trends of ST and SL are strongly correlated and are statistically independent of their corresponding residuals. The group-averaged values of scaling exponents of ST and ST MARS residuals are slightly smaller than 0.5, indicating weak anti-persistence. Thus, contrary to the interpretation prevalent in the literature, the statistical properties of ST and SL time series originate from the superposition of large scale trends and small scale fluctuations. We show that trends serve as the control manifolds about which ST and SL fluctuate. Moreover, the trend speed, defined as the ratio of instantaneous values of SL and ST trends, is tightly controlled about the treadmill speed. The strong coupling between the ST and SL trends ensures that the concomitant changes of their values correspond to movement along the constant speed goal equivalent manifold as postulated by Dingwell et al. doi:10.1371/journal.pcbi.1000856.Author summaryDuring treadmill walking, the subject’s stride time (ST) and stride length (SL) must yield a stride speed which can fluctuate over a narrow range centered on the treadmill belt’s speed. The fact that both ST and SL are persistent is an intriguing property of human gait. For persistent fluctuations any deviation from the mean value is likely to be followed by a deviation in the same direction. To trace the origin of such persistence, we used a novel approach to determine trends in spatio-temporal gait parameters. We find that the trends of ST and SL of a subject are strongly correlated and are statistically independent of their corresponding residuals. Moreover, the trend speed, defined as the ratio of instantaneous values of SL and ST trends, is tightly controlled about the treadmill speed. The persistence of gait parameters stems from superposition of large scale trends and small scale fluctuations.


2018 ◽  
Vol 10 (2) ◽  
Author(s):  
Massimiliano Pau ◽  
Federica Corona ◽  
Roberta Pili ◽  
Carlo Casula ◽  
Marco Guicciardi ◽  
...  

This study aimed to investigate possible differences in spatio-temporal gait parameters of people with Parkinson’s Disease (pwPD) when they are tested either in laboratory using 3D Gait Analysis or in a clinical setting using wearable accelerometers. The main spatio-temporal gait parameters (speed, cadence, stride length, stance, swing and double support duration) of 31 pwPD were acquired: i) using a wearable accelerometer in a clinical setting while wearing shoes (ISS); ii) same as condition 1, but barefoot (ISB); iii) using an optoelectronic system (OES) undressed and barefoot. While no significant differences were found for cadence, stance, swing and double support duration, the experimental setting affected speed and stride length that decreased (by 17% and 12% respectively, P<0.005) when passing from the clinical (ISS) to the laboratory (OES) setting. These results suggest that gait assessment should be always performed in the same conditions to avoid errors, which may lead to inaccurate patient’s evaluations.


2017 ◽  
Vol 9 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Emilia Mikołajewska

Summary Study aim: The aim of this study was to compare the outcomes of a study of post-stroke gait reeducation using the Bobath neuro‑developmental treatment (NDT-Bobath) method and the traditional approach.Material and methods: The study included 30 adult patients after ischemic stroke, aged 32-82. Patients were randomly assigned to one of the treatment groups: the study group (treated with the NDT-Bobath method combined with the traditional approach, ten sessions), and a reference group (treated with the traditional method only, ten sessions). The measurements (spatio-temporal gait parameters based on 10 m walking test: gait velocity, normalized gait velocity, cadence, normalized cadence, stride length, and normalized stride length) were administered twice: on admission (before the therapy) and after the last therapy session.Results: Statistically significant and favorable changes in the gait velocity, cadence and stride length regarding their normalized values were observed. Moderate and high correlations among changes of assessed spatio-temporal gait parameters were observed in both groups.Conclusions: The NDT-Bobath method may be regarded as a more effective form of gait post-stroke rehabilitation in young adults compared to traditional rehabilitation.


2018 ◽  
Vol 1 (2) ◽  
pp. 247-253
Author(s):  
Yuliana Ruiz-Piragauta ◽  
Brigette Paola Torres-Bello ◽  
Esperanza Camargo-Casallas

In this study we analyzed the spatio-temporal parameters (step length, step time, stride length, stride time, speed and rate) of three unilateral transtibial amputees in order to find the best gait pattern and this verify the adaptation of the prosthesis, using inertial sensors of the TECHNAID ® brand in order to make the diagnosis in an objective way; the data were processed using the MARCHA ET software of the DIGITI research group of the Universidad Distrital Francisco José de Caldas. In this study, were analyzed three subjects from the Hospital Militar Central (HMC) the cause of amputation is due to trauma caused by antipersonnel mines. It was found that subjects with unilateral transtibial amputation lean on more time and carry more weight on their healthy lower limb, which leads to an increase in mechanical demand on the knee joint of the amputated leg.


2021 ◽  
pp. 003151252199310
Author(s):  
Taeyou Jung ◽  
Yumi Kim ◽  
Luke E. Kelly ◽  
Mayumi Wagatsuma ◽  
Youngok Jung ◽  
...  

The primary purpose of this study was to compare biomechanical gait variables and perceived gait velocity between overground and treadmill walking conditions among typically developing children and adolescents. Twenty children and adolescents ( Mage = 11.4, SD = 2.9 years) walked overground and on a treadmill at a matched comfortable walking speed while a 3-D motion analysis system captured spatiotemporal and kinematic gait parameters. In order to compare perceived gait velocities, we acquired data at self-selected comfortable and fastest walking speeds. Paired t-tests comparing the children’s speed and gait in these two different walking conditions revealed significantly higher cadence ( p < .001) and shorter stride length ( p < .002), during treadmill versus overground walking. In addition, treadmill walking showed statistically significant differences in joint kinematics of ankle excursion and pelvic rotation excursions ( p < .001). Participants chose slower speeds on the treadmill than for overground walking when they were asked to select their comfortable and fastest walking speeds ( p < .001). Our findings suggest that these differences between treadmill and overground walking in cadence, stride length, and perceived gait velocity should be considered whenever a treadmill is used for gait research within the pediatric population. However, the differences we found in gait kinematics between these two walking conditions appear to be relatively trivial and fell within the common error range of kinematic analysis.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3577 ◽  
Author(s):  
Massimiliano Pau ◽  
Ilaria Mulas ◽  
Valeria Putzu ◽  
Gesuina Asoni ◽  
Daniela Viale ◽  
...  

The main purpose of the present study was to compare the smoothness of gait in older adults with and without cognitive impairments, using the harmonic ratio (HR), a metric derived from trunk accelerations. Ninety older adults aged over 65 (age: 78.9 ± 4.8 years; 62% female) underwent instrumental gait analysis, performed using a wearable inertial sensor and cognitive assessment with the Mini Mental State Examination (MMSE) and Addenbrooke’s Cognitive Examination Revised (ACE-R). They were stratified into three groups based on their MMSE performance: healthy controls (HC), early and advanced cognitive decline (ECD, ACD). The spatio-temporal and smoothness of gait parameters, the latter expressed through HR in anteroposterior (AP), vertical (V) and mediolateral (ML) directions, were derived from trunk acceleration data. The existence of a relationship between gait parameters and degree of cognitive impairment was also explored. The results show that individuals with ECD and ACD exhibited significantly slower speed and shorter stride length, as well as reduced values of HR in the AP and V directions compared to HC, while no significant differences were found between ECD and ACD in any of the investigated parameters. Gait speed, stride length and HR in all directions were found to be moderately correlated with both MMSE and ACE-R scores. Such findings suggest that, in addition to the known changes in gait speed and stride length, important reductions in smoothness of gait are likely to occur in older adults, owing to early/prodromal stages of cognitive impairment. Given the peculiar nature of these metrics, which refers to overall body stability during gait, the calculation of HR may result in being useful in improving the characterization of gait patterns in older adults with cognitive impairments.


2020 ◽  
Author(s):  
Massimiliano Pau ◽  
Micaela Porta ◽  
Giuseppina Pilloni ◽  
Giancarlo Coghe ◽  
Eleonora Cocco

Abstract Background: Although the mutual relationship between ambulation and Physical Activity (PA) in people with Multiple Sclerosis (pwMS) has been described in several studies, there is still a lack of detailed information about the way in which specific aspects of the gait cycle are associated with amount and intensity of PA. This study aimed to verify the existence of possible relationships among PA parameters and the spatio-temporal parameters of gait when both are instrumentally assessed.Methods: Thirty-one pwMS (17F, 14M, mean age 52.5, mean Expanded Disability Status Scale score 3.1) were requested to wear a tri-axial accelerometer 24h/day for 7 consecutive days and underwent an instrumental gait analysis, performed using an inertial sensor located on the low back, immediately before the PA assessment period. Main spatio-temporal parameters of gait (i.e. gait speed, stride length, cadence and duration of stance, swing and double support phase) were extracted by processing trunk accelerations. PA was quantified using average number of daily steps and percentage of time spent at different PA intensity, the latter calculated using cut-point sets previously validated for MS. The existence of possible relationships between PA and gait parameters was assessed using Spearman’s rank correlation coefficient rho.Results: Gait speed and stride length were the parameters with the highest number of significant correlations with PA features. In particular, they were found moderately to largely correlated with number of daily steps (rho 0.62, p<0.001), percentage of sedentary activity (rho = -0.44, p<0.001) and percentage of moderate-to-vigorous activity (rho = 0.48, p<0.001). Small to moderate significant correlations were observed between PA intensity and duration of stance, swing and double support phases.Conclusions: The data obtained suggest that the most relevant determinants associated with higher and more intense levels of physical activity in free-living conditions are gait speed and stride length.The simultaneous quantitative assessment of gait parameters and PA levels might represent a useful support for physical therapists in tailoring optimized rehabilitative and training interventions.


Gerontology ◽  
2021 ◽  
pp. 1-10
Author(s):  
He Zhou ◽  
Catherine Park ◽  
Mohammad Shahbazi ◽  
Michele K. York ◽  
Mark E. Kunik ◽  
...  

<b><i>Background:</i></b> Cognitive frailty (CF), defined as the simultaneous presence of cognitive impairment and physical frailty, is a clinical symptom in early-stage dementia with promise in assessing the risk of dementia. The purpose of this study was to use wearables to determine the most sensitive digital gait biomarkers to identify CF. <b><i>Methods:</i></b> Of 121 older adults (age = 78.9 ± 8.2 years, body mass index = 26.6 ± 5.5 kg/m<sup>2</sup>) who were evaluated with a comprehensive neurological exam and the Fried frailty criteria, 41 participants (34%) were identified with CF and 80 participants (66%) were identified without CF. Gait performance of participants was assessed under single task (walking without cognitive distraction) and dual task (walking while counting backward from a random number) using a validated wearable platform. Participants walked at habitual speed over a distance of 10 m. A validated algorithm was used to determine steady-state walking. Gait parameters of interest include steady-state gait speed, stride length, gait cycle time, double support, and gait unsteadiness. In addition, speed and stride length were normalized by height. <b><i>Results:</i></b> Our results suggest that compared to the group without CF, the CF group had deteriorated gait performances in both single-task and dual-task walking (Cohen’s effect size <i>d</i> = 0.42–0.97, <i>p</i> &#x3c; 0.050). The largest effect size was observed in normalized dual-task gait speed (<i>d</i> = 0.97, <i>p</i> &#x3c; 0.001). The use of dual-task gait speed improved the area under the curve (AUC) to distinguish CF cases to 0.76 from 0.73 observed for the single-task gait speed. Adding both single-task and dual-task gait speeds did not noticeably change AUC. However, when additional gait parameters such as gait unsteadiness, stride length, and double support were included in the model, AUC was improved to 0.87. <b><i>Conclusions:</i></b> This study suggests that gait performances measured by wearable sensors are potential digital biomarkers of CF among older adults. Dual-task gait and other detailed gait metrics provide value for identifying CF above gait speed alone. Future studies need to examine the potential benefits of gait performances for early diagnosis of CF and/or tracking its severity over time.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 338
Author(s):  
Claire Michelet ◽  
Daniela Zeppilli ◽  
Cédric Hubas ◽  
Elisa Baldrighi ◽  
Philippe Cuny ◽  
...  

Bioindicators assess the mangroves ecological state according to the types of pressures but they differ with the ecosystem’s specificities. We investigated benthic meiofauna diversity and structure within the low human-impacted mangroves in French Guiana (South America) in response to sediment variables with various distances to the main city. Contaminant’s concentrations differed among the stations, but they remained below toxicity guidelines. Meiofauna structure (Foraminifera, Kinorhyncha, Nematoda) however varied accordingly. Nematode’s identification brought details on the sediment’s quality. The opportunistic genus Paraethmolaimus (Jensen, 1994) strongly correlated to the higher concentrations of Hg, Pb. Anoxic sediments were marked by organic enrichment in pesticides, PCB, and mangrove litter products and dominance of two tolerant genus, Terschellingia (de Man, 1888) and Spirinia (Gerlach, 1963). In each of these two stations, we found many Desmodora individuals (de Man, 1889) with the presence of epibionts highlighting the nematodes decreased fitness and defenses. Oxic sediments without contaminants were distinguished by the sensitive genera Pseudocella (Filipjev, 1927) and a higher diversity of trophic groups. Our results suggested a nematodes sensitivity to low contaminants concentrations. Further investigations at different spatio-temporal scales and levels of deterioration, would be necessary to use of this group as bioindicator of the mangroves’ ecological status.


Sign in / Sign up

Export Citation Format

Share Document