scholarly journals LncRNA-URHC Functions as a ceRNA to Regulate Danjb9 Expression by Competitively Binding to miR-5007-3p in Hepatocellular Carcinoma

Author(s):  
kunwei niu ◽  
Shibin Qu ◽  
Xuan Zhang ◽  
Jimin Dai ◽  
Jianlin Wang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is often diagnosed at a late stage, when the prognosis is poor. The regulation of long non-coding RNAs (lncRNAs) plays a crucial role in HCC. However, the precise regulatory mechanisms of lncRNA signaling in HCC remain largely unknown. We study aim to investigate the underlying mechanisms of lncRNA (upregulated in hepatocellular carcinoma) URHC in HCC. Methods: RT-qPCR, fluorescence in situ hybridization (FISH) staining, EdU, colony formation, and tumor xenografts experiments were used to identify localized and biological effects of URHC on HCC cells in vitro and in vivo. The bioinformatics analysis, Dual-luciferase reporter assay, and rescue experiments revealed the potential mechanism of URHC.Results: URHC silencing may inhibit the HCC cells proliferation in vitro and in vivo. We found that URHC was mainly localized in the cytoplasm. The expression of miR-5007-3p was negatively regulated by URHC. And miR-5007-3p could reverse the effect of URHC in HCC cells. The expression of DNAJB9 was negatively regulated by miR-5007-3p but positively regulated by URHC. These suggesting of lncRNA-URHC positively regulated the level of DNAJB9 by sponging miR-5007-3p.Conclusion: Together, our study elucidated the role of URHC as a miRNA sponge in HCC, and shed new light on lncRNA-directed diagnostics and therapeutics in HCC.

2020 ◽  
Author(s):  
kunwei niu ◽  
Shibin Qu ◽  
Xuan Zhang ◽  
Jimin Dai ◽  
Jianlin Wang ◽  
...  

Abstract Background: To investigate the underlying mechanisms of lncRNA URHC in HCC. Methods: RT-qPCR, FISH staining, EdU, colony formation, and tumor xenografts experiments were used to identify localized and biological effects of URHC on HCC cells in vitro and in vivo. The Bioinformatics analysis, Dual- luciferase reporter assay, and rescue experiments revealed the potential mechanism of URHC. Results: We found that URHC was mainly localized in the cytoplasm. URHC silencing may inhibit the HCC cells proliferation. And URHC positively regulated the level of DNAJB9 by sponging miR-5007-3p. Conclusion: Together, our study elucidated the role of URHC as a miRNA sponge in HCC, and shed new light on lncRNA-directed diagnostics and therapeutics in HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Kunwei Niu ◽  
Shibin Qu ◽  
Xuan Zhang ◽  
Jimin Dai ◽  
Jianlin Wang ◽  
...  

Background. Hepatocellular carcinoma (HCC) is often diagnosed at a late stage, when the prognosis is poor. The regulation of long noncoding RNAs (lncRNAs) plays a crucial role in HCC. However, the precise regulatory mechanisms of lncRNA signaling in HCC remain largely unknown. Our study aims to investigate the underlying mechanisms of lncRNA (upregulated in hepatocellular carcinoma) URHC in HCC. Objective. To study the in vivo and in vitro localization and biological effects of URHC on liver cancer cells. Through bioinformatics analysis, dual-luciferase reporter gene analysis and rescue experiments revealed the possible mechanism of URHC. Methods. RT-qPCR, fluorescence in situ hybridization (FISH) staining, EdU, colony formation, and tumor xenograft experiments were used to identify localized and biological effects of URHC on HCC cells in vitro and in vivo. The bioinformatics analysis, dual-luciferase reporter assay, and rescue experiments revealed the potential mechanism of URHC. Results. URHC silencing may inhibit the HCC cells’ proliferation in vitro and in vivo. We found that URHC was mainly localized in the cytoplasm. The expression of miR-5007-3p was negatively regulated by URHC. And miR-5007-3p could reverse the effect of URHC in HCC cells. The expression of DNAJB9 was negatively regulated by miR-5007-3p but positively regulated by URHC. These suggestive of lncRNA-URHC positively regulated the level of DNAJB9 by sponging miR-5007-3p. Conclusion. Together, our study elucidated the role of URHC as a miRNA sponge in HCC and shed new light on lncRNA-directed diagnostics and therapeutics in HCC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Immunohistochemical staining and qRT-PCR analysis were performed in human HCC sampels to study the clinical significance of KLF7, VPS35 and β-catenin. Results Firstly, KLF7 was highly expressed in human HCC samples and correlated with patients’ differentiation and metastasis status. KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Lastly, there was a positive correlation among KLF7, VPS35 and active-β-catenin in human HCC patients. Conclusion We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Xiaoguang Gu ◽  
Jianan Zhang ◽  
Yajuan Ran ◽  
Hena Pan ◽  
JinHong Jia ◽  
...  

AbstractCircular RNAs have been reported to play significant roles in regulating pathophysiological processes while also guiding clinical diagnosis and treatment of hepatocellular carcinoma (HCC). However, only a few circRNAs have been identified thus far. Herein, we investigated the role of a specific closed-loop structure of hsa_circ_101555 that was generated by back-splicing of the host gene casein kinase 1 gamma 1 (CSNK1G1) in the development and proliferation of HCC. We investigated the expression of Hsa_circ_101555 in HCC and normal tissues using bioinformatics. The expression level of hsa_circ_101555 was further detected by fluorescence in situ hybridization and qRT-PCR in ten HCC patients. Transwell, migration, WST-1 assays, and colony formation assays were used to evaluate the role of hsa_circ_101555 in HCC development and proliferation. The regulatory mechanisms of hsa_circ_101555 in miR-145-5p and CDCA3 were determined by dual luciferase reporter assay. A mouse xenograft model was also used to determine the effect of hsa_circ_101555 on HCC growth in vivo. hsa_circ_101555 showed greater stability than the linear RNA; while in vitro and in vivo results demonstrated that hsa_circ_101555 silencing significantly suppressed cell proliferation, migration, and invasion of HCC cells. Rescue experiments further demonstrated that suppression of miR-145-5p significantly attenuated the biological effects of hsa_circ_101555 knockdown in HCC cells. We also identified a putative oncogene CDCA3 as a potential miR-145-5p target. Thus, our results demonstrated that hsa_circ_101555 might function as a competing endogenous RNA of miR-145-5p to upregulate CDCA3 expression in HCC. These findings suggest that hsa_circ_101555 may be a potential therapeutic target for patients with HCC.


2020 ◽  
Author(s):  
Nan Yang ◽  
Tianxiang Chen ◽  
Bowen Yao ◽  
Liang Wang ◽  
Runkun Liu ◽  
...  

Abstract Background: Long non-coding RNAs (lncRNAs) have obtained growing attention due to their potential effects as novel regulators in various tumors. This study aimed to investigate the expression and roles of lncRNA ZFPM2-AS1 in the progression of hepatocellular carcinoma (HCC). Methods: Transwell was used to determine migration and invasion of HCC cells in vitro. The lung metastasis mouse model was established to detect tumor metastasis of HCC in vivo. The direct binding of miR-3612 to 3'UTR of DAM15 was confirmed by luciferase reporter assay. The expression of ZFPM2-AS1 and miR-3612 in HCC specimens and cell lines were detected by real-time PCR. The correlation among ZFPM2-AS1 and miR-3612 were disclosed by a dual-luciferase reporter assay, RIP assay and biotin pull-down assay.Results: In present study, we found that ZFPM2-AS1 was up-regulated in HCC tissues and cells and its upregulation was associated with TNM stage, vascular invasion, and poor prognosis of HCC patients. Functionally, gain- and loss-of-function experiments indicated that ZFPM2-AS1 promoted cell migration, invasion and EMT progress in vitro and in vivo. ZFPM2-AS1 could function as a competing endogenous RNA (ceRNA) by sponging miR-3612 in HCC cells. Mechanically, miR-3612 inhibited HCC metastasis and alternation of miR-3612 reversed the promotive effects of ZFPM2-AS1 on HCC cells. In addition, we confirmed that ADAM15 was a direct target of miR-3612 in HCC and mediated the biological effects of miR-3612 and ZFPM2-AS1 in HCC. Curcumin, an active derivative from turmeric, exerts its anticancer effects through ZFPM2-AS1/miR-3612/ADAM15 pathway. Our data identified ZFPM2-AS1 as a novel oncogenic lncRNA and correlated malignant clinical outcomes in HCC patients. Conclusions: ZFPM2-AS1 performed as oncogenic role via targeting miR-3612 and subsequently promoted ADAM15 expression in HCC. Our results revealed that ZFPM2-AS1 could be a potential prognostic biomarker and therapeutic target for HCC.


Author(s):  
Chenwei Wang ◽  
Yadi Liao ◽  
Wei He ◽  
Hong Zhang ◽  
Dinglan Zuo ◽  
...  

Abstract Background Elafin is a serine protease inhibitor critical for host defence. We previously reported that Elafin was associated with the recurrence of early-stage hepatocellular carcinoma (HCC) after surgery. However, the exact role of Elafin in HCC remains obscure. Methods HCC tissue microarrays were used to investigate the correlation between Elafin expression and the prognosis of HCC patients. In vitro migration, invasion and wound healing assays and in vivo lung metastasis models were used to determine the role of Elafin in HCC metastasis. Mass spectrometry, co-immunoprecipitation, western blotting, and immunofluorescence staining assays were performed to uncover the mechanism of Elafin in HCC. Dual-luciferase reporter and chromatin immunoprecipitation assays were employed to observe the transcriptional regulation of Elafin. Results Elafin expression was frequently increased in HCC tissues compared to normal tissues, and high Elafin expression in HCC tissues was correlated with aggressive tumour phenotypes and a poor prognosis in HCC patients. Elafin dramatically enhanced the metastasis of HCC cells both in vitro and in vivo by interacting with EGFR and activating EGFR/AKT signalling. Moreover, Elafin attenuated the suppressive effects of erlotinib on HCC metastasis. Besides, Elafin was transcriptionally regulated by Sp1 in HCC cells. Clinically, Elafin expression was positively correlated with Sp1, Vimentin, and EGFR signalling in both our HCC tissue microarrays and TCGA database analysis. Conclusions Upregulation of Elafin by Sp1 enhanced HCC metastasis via EGFR/AKT pathway, and overexpression of Elafin attenuated the anti-metastatic effects of erlotinib, suggesting a valuable prognostic biomarker and therapeutic target for HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chenghong Wang ◽  
Guicai Zhu ◽  
Miaolin Yu ◽  
Xiufang Mi ◽  
Honghua Qu

Background. Hepatocellular carcinoma (HCC) has been regarded as the fifth most common cancer worldwide with a low prognosis. miR-455 usually played the role of a tumor suppressor in multiple cancers. The aim of this study was to investigate the roles of miR-455 in HCC. Materials and Methods. Cell viability and invasion were measured by CCK8 and Transwell assays. Luciferase reporter assay was performed to verify that miR-455 directly binds to the 3′-noncoding region (UTR) of RAB18 mRNA in Huh7 cells. Results. The expression of miR-455 was lower in HCC tissues and cell lines than in nontumor tissues and normal cell line, and downregulation of miR-455 was connected with worse outcome of HCC patients. miR-455 suppressed cell proliferation in vitro and in vivo, and it inhibited the abilities of cell invasion and EMT in HCC. RAB18 was upregulated in HCC tissues and cell lines, and the expression of RAB18 was regulated by miR-455. RAB18 reversed partial roles of miR-455 on cell viability and invasion in HCC. Conclusion. miR-455 inhibited cell viability and invasion by directly targeting the 3′-UTR of RAB18 mRNA of hepatocellular carcinoma.


2020 ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective: Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods: CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Human HCC tissues were collected to study the clinical significance VPS35 and β-catenin. Results: Firstly, KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Conclusion: We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


2021 ◽  
Author(s):  
Hongwei Chu ◽  
Changqing Wu ◽  
Qun Zhao ◽  
Rui Sun ◽  
Kuo Yang ◽  
...  

Abstract Sorafenib is commonly used to treat advanced human hepatocellular carcinoma (HCC). However, clinical efficacy has been limited by drug resistance. In this study, we used label-free quantitative proteomic analysis to systematically investigate the underlying mechanisms of sorafenib resistance in HCC cells. A total of 1709 proteins were confidently quantified. Among them, 89 were differentially expressed, and highly enriched in the processes of cell-cell adhesion, negative regulation of apoptosis, response to drug and metabolic processes involving in sorafenib resistance. Notably, folate receptor α (FOLR1) was found to be significantly upregulated in resistant HCC cells. In addition, in-vitro studies showed that overexpression of FOLR1 decreased the sensitivity of HCC cells to sorafenib, whereas siRNA-directed knockdown of FOLR1 increased the sensitivity of HCC cells to sorafenib. Immunoprecipitation-mass spectrometry analysis suggested a strong link between FOLR1 and autophagy related proteins. Further biological experiments found that FOLR1-related sorafenib resistance was accompanied by the activation of autophagy, whereas inhibition of autophagy significantly reduced FOLR1-induced cell resistance. These results suggest the driving role of FOLR1 in HCC resistance to sorafenib, which may be exerted through FOLR1-induced autophagy. Therefore, this study may provide new insights into understanding the mechanism of sorafenib resistance.


Sign in / Sign up

Export Citation Format

Share Document