scholarly journals Efficient toluene adsorption/desorption on biochar derived from in situ acid-treated sugarcane bagasse

Author(s):  
Yuan Qu ◽  
Li Xu ◽  
Yi Chen ◽  
Shikuan Sun ◽  
Yu Wang ◽  
...  

Abstract Carbon-based materials with great adsorption performance are of importance to meet the needs of industrial gas adsorption. Being massive agricultural wastes of sugarcane bagasse, China could use this waste into wealth. However, the comprehensive utilization of sugarcane bagasse as precursors for biochar that can be used as adsorbent has not been extensively explored. In this study, a series of in-situ sulfuric acid modified biochar were prepared by hydrothermal carbonization process. The prepared biochar (SBAC-7) is combined of two main advantages that are high microporosity (micropore surface area = 1106 m 2 /g) and rich in S-containing functional groups on the surface. In particular, SBAC-7 showed an excellent adsorption capacity of toluene (771.1 mg/g) at 30 o C, which is nearly 3 times as high as the commercial activated carbons. Meanwhile, it showed great stability and cyclic regeneration performance with five toluene adsorption-desorption test cycles. This study provides a high-performance biochar for adsorption-desorption cycle in practical engineering applications, and would contribute to the sustainable “sugarcane production - bagasse utilization” circular economy.

RSC Advances ◽  
2020 ◽  
Vol 10 (40) ◽  
pp. 23749-23758
Author(s):  
Yu Wang ◽  
Wangsheng Chen ◽  
Bo Zhao ◽  
Huaqin Wang ◽  
Linbo Qin ◽  
...  

A series of activated carbons were prepared by carbonizing sugarcane bagasse combined with surface modification, which showed an excellent performance of adsorbing toluene (522 mg g−1 at 30 °C).


2019 ◽  
Vol 30 (3) ◽  
pp. 331-344 ◽  
Author(s):  
Rui Yan ◽  
Kai Wang ◽  
Xiaodong Tian ◽  
Xiao Li ◽  
Tao Yang ◽  
...  

2020 ◽  
Vol 38 (9-10) ◽  
pp. 450-463
Author(s):  
Xiya Li ◽  
Jieqiong Qiu ◽  
Yiqi Hu ◽  
Xiaoyuan Ren ◽  
Lu He ◽  
...  

The production of low-cost biologically activated carbons (BACs) is urgent need of environmental protection and ecological sustainability. Hence, walnut shells were treated by traditional pyrolysis, direct KOH impregnation and combined activation composed of hydrothermal carbonization and two-step H3PO4- and pyrolysis-activation process to obtain porous carbon with high adsorption capacity. It was found that the best adsorption capacity for iodine and organic dye methylene blue (MB) can be obtained using the KOH impregnation at impregnation ratio of 1:1 or combined activation comprising of 2 h H3PO4 activation and 1 h pyrolysis activation at 1000°C. The produced KOH, H3PO4/pyrolysis activated BACs at the optimum conditions are superior to that of commercial ACs, 9.4 and 1.3 times for MB removal, 4 and 4.5 times for iodine number respectively. Characterization results demonstrated their porous structure with very good textural properties such as high BET surface area (1689.1 m2/g, 1545.3 m2/g) and high total pore volume (0.94 cm3/g, 0.96 cm3/g). The N2 adsorption-desorption isotherm of H3PO4/pyrolysis activated hydrochar suggested the co-existence of micro and meso-pores. Moreover, they are more effective for the removal of Fe(III) and Cr(VI) from aqueous solution than the commercial AC, suggesting a promising application in the field of water treatment.


2021 ◽  
Vol 236 ◽  
pp. 01016
Author(s):  
Congcong Huang ◽  
Yunhui Dong ◽  
Xingjun Dong

A facile route has been employed to synthesize a series of high performance activated carbons as the electrode material for supercapacitors. The structure of the carbons are characterized by N2 adsorption/desorption and FTIR spectroscopy. The electrochemical performances of the carbons as an electrode material were evaluated by cyclic voltammetry test and galvanostatic charge/discharge measurements. As a biomass derived carbon, KOH-1 exhibits high capacity, good rate capability and high energy density, indicating the promising application of hydrothermal combining with KOH activation method for biomass materials that used in supercapacitors


2021 ◽  
Vol 904 ◽  
pp. 407-412
Author(s):  
Threeraphat Chutimasakul ◽  
Tinutda Phonlam ◽  
Varistha Chobpattana ◽  
Pattra Lertsarawut ◽  
Wilasinee Kingkam ◽  
...  

Activated carbons (ACs) are a versatile group of adsorbents for water pollution control, especially organic dyes. Harsh chemicals and high temperatures are required for the activation process of ACs, which becomes a significant concern due to their toxicity and harmful effects on human health and the environment. Gamma irradiation, an alternative green technique, is a promising strategy for pretreatment and escalates the nitrogen or oxygen functional group of ACs. The current study provides the modification of ACs by the gamma irradiation in the various pH (5-11) of urea solution. The modified ACs were characterized by scanning electron microscopy (SEM), nitrogen gas adsorption-desorption analysts (BET), temperature program desorption (TPD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and X-ray diffraction spectroscopy (XRD). The point of zero charges and dye adsorption capacities were determined. This finding demonstrates that the ACs can be modified by gamma irradiation at 25 kGy in the urea solution media. The degree of graphitization enhanced significantly at pH 11(AC-pH11). The oxygen-rich functional groups created by radiation assists could enhance the electrostatic attraction between acid gases or cationic dyes. AC-pH11 also was able to adsorb methylene blue (160.73 ± 1.70 mg/g) greater than methyl orange (127.57 ± 2.22 mg/g).


2019 ◽  
Vol 26 (1) ◽  
pp. 292-300 ◽  
Author(s):  
Vanja Gilja ◽  
Zvonimir Katančić ◽  
Ljerka Kratofil Krehula ◽  
Vilko Mandić ◽  
Zlata Hrnjak-Murgić

AbstractThe waste fly ash (FA) material was subjected to chemical treatment with HCl at elevated temperature for a different time to modify its porosity. Modified FA particles with highest surface area and pore volume were further used as a support for TiO2 catalyst during FA/TiO2 nanocomposite preparation. The nanocomposite photocatalysts were obtained by in situ sol–gel synthesis of titanium dioxide in the presence of FA particles. To perform accurate characterization of modified FA and FA/TiO2 nanocomposite photocatalysts, gas adsorption-desorption analysis, X-ray diffraction, scanning electron microscopy, UV/Vis and Infrared spectroscopy were used. Efficiency evaluation of the synthesized FA/TiO2 nanocomposites was performed by following the removal of Reactive Red 45 (RR45) azo dye during photocatalytic treatment under the UV-A irradiation. Photocatalysis has been carried out up to five cycles with the same catalysts to investigate their stability and the possible reuse. The FA/TiO2 photocatalyst showed very good photocatalytic activity and stability even after the fifth cycles. The obtained results show that successfully modified waste fly ash can be used as very good TiO2 support.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1261-C1261
Author(s):  
Jorge Sotelo ◽  
Scott McKellar ◽  
Stephen Moggach ◽  
John Mowat ◽  
Anna Warren ◽  
...  

In recent years the development of new methods of storing, trapping or separating light gases, such as CO2, CH4 and CO has become of utmost importance from an environmental and energetic point of view. Porous materials such as zeolites and porous organic polymers have long been considered good candidates for this purpose. More recently, the ample spectrum of existing metal organic frameworks (MOFs) together with their functional and mechanical properties have attracted even further interest. The porous channels found in these materials are ideal for the uptake of guests of different shapes and sizes, and with careful design they can show high selectivity. Adsorption properties of MOFs have been thoroughly studied, however obtaining in depth structural insight into the adsorption/desorption mechanism of these materials is challenging. For example, out of the hundreds of MOF structures published to date, there are less than 20 entries currently in the CSD in which the CO2 molecule can be located. Here we present our novel findings using the high-pressure gas cell at the Diamond Light Source on beamline I19, where we have studied the inclusion of CO2, CH4 and CO on the microporous scandium framework, Sc2BDC3 (BDC = benzene-1,4-dicarboxylate) and its amino-functionalised derivative, Sc2(BDC-NH2)3. Here, the different adsorption sites for CO2, CH4 and CO in both frameworks have been determined as a function of increasing gas pressure. These structures, coupled with Density Functional Theory calculations, have helped to elucidate the host-guest interactions governing the different levels of selectivity shown by both Sc2BDC3 and Sc2(BDC-NH2)3. Additionally, gas mixtures have also been studied; in particular CO2/CH4 mixtures of different compositions, explaining the selectivity of the frameworks for CO2 over other gases and showing the great potential of in situ structural experiments for investigation of the potential applications of MOFs.


2015 ◽  
Vol 35 (2) ◽  
pp. 49-55 ◽  
Author(s):  
Viviana Ospina ◽  
Robison Buitrago ◽  
Diana Patricia Lopez

<p>Physical and chemical activation methods were used to prepare two different activated carbons (ACs) from castor de-oiled cake. H<sub>2</sub>O/CO<sub>2</sub> mixture was used as the physical activating agent, and for chemical activation potassium carbonate (K<sub>2</sub>CO<sub>3</sub>) was used. For both materials, textural and chemical properties were characterized by N<sub>2</sub> adsorption–desorption isotherms, thermogravimetric analysis (TGA), Fourier Transform Infrared Spectroscopy (FTIR), thermal programmed reduction (TPR), X-ray fluorescence (XRF), and scanning electron microscopy (SEM). The ACs were used as supports for NiMo sulfide catalysts, which were prepared by wetness impregnation and in-situ sulfided for the hydrodeoxygenation (HDO) of guaiacol (GUA) as a model compound of bio-oil. The HDO reaction was carried out in a typical batch reactor at 5 MPa of H<sub>2</sub> and 350 °C. Under the same test conditions, commercial catalysts were also tested in the reaction. Although the commercial catalysts displayed higher GUA conversion, the prepared catalysts showed higher activity and non-oxygenated and saturated products yield. </p>


Sign in / Sign up

Export Citation Format

Share Document