scholarly journals The synergistic anticancer traits of graphene oxide plus doxorubicin against BT474 and MCF7 breast cancer stem cells in vitro

Author(s):  
Mahsa Ebrahimi ◽  
maryam teimouri ◽  
Mehdi Pooladi

Abstract Breast cancer is among leading causes of death due to cancers around the globe. Current therapeutic approaches towards healing of breast cancer have been associated with poor outcomes. Graphene and its derivatives have a two-dimensional flat structure, which is characterized by the ability to carry drugs and modify the surface, low cytotoxicity and high biocompatibility. This study was performed on MCF7 and BT474 human breast cancer cells. Different concentrations of doxorubicin (DOX), graphene oxide (GO) and graphene oxide plus doxorubicin (GO-DOX) were subjected to both cell lines at specified intervals. At the end of the treatments, MTT test was applied to determine the viability of cells and then flow cytometry, colony formation and spheroid tests were implemented for both cell lines treated with DOX, GO and GO-DOX components. We used DLS and TEM to confirm the GO properties. According to the MTT test results, 1 µL of DOX at 10 mg /mL (equivalent to 0.1 mg / mL) caused 50% survival of MCF7 cells at 24 hours. In both cell lines, an increase in apoptosis occurred after incubation with GO and DOX. Although, a rate of mortality of MCF-7 cells was due to necrosis, the BT474 cells death was merely through the apoptosis. Furthermore, the results of colony formation test outlined an enhancing inhibitory effect in the presence of GO-DOX as a comparison to the control. Additionally, spheroids formed following treatment with GO-DOX exhibited a significant decrease compared to their control group; with an increase in the number of spheroids in BT474 cells compared to those in the MCF-7. The decreasing effect of compounds against the migration and cell invasion potential was also observed, being higher in MCF7 than BT474 cells. The effects of cytotoxic GO were observed at higher concentrations.

Author(s):  
G. Siva ◽  
S. Venkatesh ◽  
G. Prem Kumar ◽  
M. Muthukumar ◽  
T. Senthil Kumar ◽  
...  
Keyword(s):  

Author(s):  
Muhammad Luqman Nordin ◽  
Arifah Abdul Kadir ◽  
Zainul Amiruddin Zakaria ◽  
Rasedee Abdullah ◽  
Muhammad Nazrul Hakim Abdullah

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4332
Author(s):  
Nurul Izzati Zulkifli ◽  
Musthahimah Muhamad ◽  
Nur Nadhirah Mohamad Zain ◽  
Wen-Nee Tan ◽  
Noorfatimah Yahaya ◽  
...  

A bottom-up approach for synthesizing silver nanoparticles (AgNPs-GA) phytomediated by Garcinia atroviridis leaf extract is described. Under optimized conditions, the AgNPs-GA were synthesized at a concentration of 0.1 M silver salt and 10% (w/v) leaf extract, 1:4 mixing ratio of reactants, pH 3, temperature 32 °C and 72 h reaction time. The AgNPs-GA were characterized by various analytical techniques and their size was determined to be 5–30 nm. FTIR spectroscopy indicates the role of phenolic functional groups in the reduction of silver ions into AgNPs-GA and in supporting their subsequent stability. The UV-Visible spectrum showed an absorption peak at 450 nm which reflects the surface plasmon resonance (SPR) of AgNPs-GA and further supports the stability of these biosynthesized nanoparticles. SEM, TEM and XRD diffractogram analyses indicate that AgNPs-GA were spherical and face-centered-cubic in shape. This study also describes the efficacy of biosynthesized AgNPs-GA as anti-proliferative agent against human breast cancer cell lines, MCF-7 and MCF-7/TAMR-1. Our findings indicate that AgNPs-GA possess significant anti-proliferative effects against both the MCF-7 and MCF-7/TAMR-1 cell lines, with inhibitory concentration at 50% (IC50 values) of 2.0 and 34.0 µg/mL, respectively, after 72 h of treatment. An induction of apoptosis was evidenced by flow cytometry using Annexin V-FITC and propidium iodide staining. Therefore, AgNPs-GA exhibited its anti-proliferative activity via apoptosis on MCF-7 and MCF-7/TAMR-1 breast cancer cells in vitro. Taken together, the leaf extract from Garcinia atroviridis was found to be highly capable of producing AgNPs-GA with favourable physicochemical and biological properties.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Shengxian Zhao ◽  
Yin Cao ◽  
Zhenzhen Cui ◽  
Jiayun Zhang ◽  
Zhixiang Pan ◽  
...  

A series of 2-arylidene-N-(quinolin-6-yl)hydrazine-1-carboxamides 5a–5o were synthesized and characterized. The synthesized compounds (5a–5o) were screened in vitro against three breast cancer cell lines: SKBR3, MDA-MB-231, and MCF-7 cancer cell lines by the MTT assay. According to MTT results, compounds 5k and 5l showed better antiproliferative activities over MCF-7 cell lines with IC50 values of 8.50 and 12.51 μM. Colony formation assay indicated 5k/5l treatment obviously inhibited the growth of MCF-7 cells and 5k/5l-induced cell cycle was arrested in the G2-M phase. Moreover, 5k/5l significantly increased the level of cleaved PARP and induced the apoptosis in MCF-7 cells. In addition, compared to Hela cells, MCF-7 cells were more sensitive to 5k/5l treatment.


2020 ◽  
Vol 9 (1) ◽  
pp. 153-163 ◽  
Author(s):  
Burcu Sumer Tuzun ◽  
Tugce Fafal ◽  
Pelin Tastan ◽  
Bijen Kivcak ◽  
Besra Ozmen Yelken ◽  
...  

AbstractASP was used to synthesize FeNPA. They were characterized by UV-vis spectroscopy, FT-IR, TEM, SEM, XRD and ZP. The aim of this study was to evaluate in vitro cytotoxic activity and antioxidant acitivities of FeNPA and ASP. The antioxidant properties were evaluated using DPPH, ABTS+ and H2O2 assays. FeNPA had higher antioxidant activity comparing to ASP according to DPPH (IC50: 3.48 μg/mL) and ABTS+ (60.52%) assays. Anti-cancer activities of FeNPA and ASP were investigated in breast cancer, melanoma and control cell lines. FeNPA was more cytotoxic than ASP in MCF-7, MeWo, CHL-1, and HEL 299 cells. FeNPA had shown that mitochondria induce apoptosis through stress in MDA-MB-231, and cells MeWo. ASP also induced apoptosis 2.23-fold in MCF-7 cells. Progesterone receptor gene expression showed a 10-fold increase in a hormone-dependent MCF-7 cell line in ASP, and FeNPA treatment. Expressions of BCL6, CXCL12, DNAJC15, RB1 and TPM1 in melanoma cancer cell lines were significantly increased in ASP and FeNPA administration. It had been shown that FeNPA regulates gene expressions that may be considered important in terms of prognosis in breast cancer and melanoma cell lines and it is suggested that gene expressions regulated by FeNPA are also evaluated in animal models in vivo.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 478 ◽  
Author(s):  
Rasha Al-Rikabi ◽  
Hanady Al-Shmgani ◽  
Yaser Hassan Dewir ◽  
Salah El-Hendawy

(1) Background: Plant flavonoids are efficient in preventing and treating various diseases. This study aimed to evaluate the ability of hesperidin, a flavonoid found in citrus fruits, in inhibiting lipopolysaccharide (LPS) induced inflammation, which induced lethal toxicity in vivo, and to evaluate its importance as an antitumor agent in breast cancer. The in vivo experiments revealed the protective effects of hesperidin against the negative LPS effects on the liver and spleen of male mice. (2) Methods: In the liver, the antioxidant activity was measured by estimating the concentration of glutathione (GSH) and catalase (CAT), whereas in spleen, the concentration of cytokines including IL-33 and TNF-α was measured. The in vitro experiments including MTT assay, clonogenity test, and sulforhodamine 101 stain with DAPI (4′, 6-diamidino-2-phenylindole) were used to assess the morphological apoptosis in breast cancer cells. (3) Results: The results of this study revealed a significant increase in the IL-33 and TNF-α cytokine levels in LPS challenged mice along with a considerable elevation in glutathione (GSH); moreover, the catalase (CAT) level was higher compared to that of the control group. Cytotoxicity of the MCF-7 cell line revealed significant differences among the groups treated with different concentrations when compared to the control groups, in a concentration-dependent manner. Hesperidin significantly inhibited the colony formation of MCF7 cells when compared to that of control. Clear changes were observed in the cell shape, including cell shrinkage and chromatin condensation, which were associated with a later apoptotic stage. (4) Conclusion: The results indicate that hesperidin might be a potential candidate in preventing diseases.


2020 ◽  
Author(s):  
Jihui Chen ◽  
Zhipeng Wang ◽  
Shouhong Gao ◽  
Kejin Wu ◽  
Fang Bai ◽  
...  

Abstract AimPemetrexed, a new generation antifolate drug, is approved for the treatment for locally advanced or metastatic breast cancer, but factors affecting the efficacy and resistance of it have yet to be fully explicit. ATP-binding cassette transporters have been reported as prognostic and adverse effects predictors of many xenobiotics. This study was designed to explore whether ABC transporters affect pemetrexed resistance and may contribute to treatment regimen optimization for breast cancer.MethodsFirstly, the expression of ABC transporters family members was measured in cell lines, thereafter examined the potential role of ABC transporter in conferring resistance to pemetrexed in primary cancer cell lines isolated from 34 breast cancer patients, and then the role of ABCC5 in mediating transport of pemetrexed and apoptosis pathway in MCF-7 cell lines was assessed. Finally, the functions of ABCC5 on therapeutic effect of pemetrexed was evaluated in breast cancer bearing mice.ResultsThe expressions of ABCC2, ABCC4, ABCC5 and ABCG2 were significantly increased in pan-resistance cell lines, and the ABCC5, the most obvious one, was 5.21 times higher than that of the control group. The expression of ABCC5 was inversely correlated with sensitivity (IC50) of pemetrexed (r = 0.741; p<0.010) in breast cancer cell lines from 34 patients. Further, we found expression of ABCC5 influenced the efflux and cytotoxicity of pemetrexed in MCF-7 cell line, and the IC50 were 0.06 μg/ml and 0.20 μg/ml in ABCC5 knock-down and over-expression cells, respectively. In vivo study, we found ABCC5 affected sensitivity of pemetrexed in breast cancer bearing mice, and the tumor volume was much larger in ABCC5 over-expression group than that in control group (2.7 folds vs 1.2 folds).ConclusionsOur results indicated ABCC5 was associated with pemetrexed sensitivity and resistance in vitro and in vivo, and may be a biomarker for regimen optimization of pemetrexed in breast cancer treatment.


Author(s):  
Bruna Alexandre Oliveira da Silva ◽  
Isabela Spido Dias ◽  
Luís Eduardo Sarto ◽  
Elba Pereira de Gois ◽  
Claudia Torres ◽  
...  

Purpose: Breast cancer is the most common female malignancy and melanoma is the most lethal type of skin cancer. Traditional therapy for cancer treatment is far from satisfactory due to drug resistance and side effects, thus a search for new medicines is being emphasized. Palladium(II) complexes have been reported as anticancer potential agents. In this work, the anticancer activities and cell death induction of a new series of square-planar palladium(II) complexes were evaluated against MCF-7 and MDA-MB-435 cancer cells. Methods: MCF-7 (breast carcinoma) and MDA-MB-435 (melanoma) cells were cultivated, and treated with ligand and Pd(II) complexes. Cell growth, migration and adhesion inhibition, morphological alterations, cell death induction and, DNA interaction upon treatment were studied. Results: Pd(II) complexes exhibited both short and long-term antiproliferative effects on both cell lines, reducing by 80% cell growth in the SRB assay and abolishing long-term proliferation, estimated by the clonogenic assay. Complexes reduced significantly (p < 0.05) cell migration and adhesion when compared to the control group. Complexes induced morphological alterations in cell lines and significant (p<0.05) cellular shrinkage. Cell death was induced and the complexes were able to interact with DNA, inducing cleavage of double-stranded DNA, which may account for the complexes cytotoxic effects, observed against both MCF-7 and MDA-MB-435 cells. Conclusion: Overall, the complexes exhibited cytotoxic activities and induced cell death. These observations emphasize an anticancer role with a potential therapeutic value for Pd(II) complexes to improve the outcome of patients with breast cancer and melanoma.


Sign in / Sign up

Export Citation Format

Share Document