scholarly journals In Vivo and In Vitro Evaluation of the Protective Effects of Hesperidin in Lipopolysaccharide-Induced Inflammation and Cytotoxicity of Cell

Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 478 ◽  
Author(s):  
Rasha Al-Rikabi ◽  
Hanady Al-Shmgani ◽  
Yaser Hassan Dewir ◽  
Salah El-Hendawy

(1) Background: Plant flavonoids are efficient in preventing and treating various diseases. This study aimed to evaluate the ability of hesperidin, a flavonoid found in citrus fruits, in inhibiting lipopolysaccharide (LPS) induced inflammation, which induced lethal toxicity in vivo, and to evaluate its importance as an antitumor agent in breast cancer. The in vivo experiments revealed the protective effects of hesperidin against the negative LPS effects on the liver and spleen of male mice. (2) Methods: In the liver, the antioxidant activity was measured by estimating the concentration of glutathione (GSH) and catalase (CAT), whereas in spleen, the concentration of cytokines including IL-33 and TNF-α was measured. The in vitro experiments including MTT assay, clonogenity test, and sulforhodamine 101 stain with DAPI (4′, 6-diamidino-2-phenylindole) were used to assess the morphological apoptosis in breast cancer cells. (3) Results: The results of this study revealed a significant increase in the IL-33 and TNF-α cytokine levels in LPS challenged mice along with a considerable elevation in glutathione (GSH); moreover, the catalase (CAT) level was higher compared to that of the control group. Cytotoxicity of the MCF-7 cell line revealed significant differences among the groups treated with different concentrations when compared to the control groups, in a concentration-dependent manner. Hesperidin significantly inhibited the colony formation of MCF7 cells when compared to that of control. Clear changes were observed in the cell shape, including cell shrinkage and chromatin condensation, which were associated with a later apoptotic stage. (4) Conclusion: The results indicate that hesperidin might be a potential candidate in preventing diseases.

2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Garhett L. Wyatt ◽  
Lyndsey S. Crump ◽  
Chloe M. Young ◽  
Veronica M. Wessells ◽  
Cole M. McQueen ◽  
...  

Abstract Background Breast cancer is a leading cause of cancer-related death for women in the USA. Thus, there is an increasing need to investigate novel prognostic markers and therapeutic methods. Inflammation raises challenges in treating and preventing the spread of breast cancer. Specifically, the nuclear factor kappa b (NFκB) pathway contributes to cancer progression by stimulating proliferation and preventing apoptosis. One target gene of this pathway is PTGS2, which encodes for cyclooxygenase 2 (COX-2) and is upregulated in 40% of human breast carcinomas. COX-2 is an enzyme involved in the production of prostaglandins, which mediate inflammation. Here, we investigate the effect of Singleminded-2s (SIM2s), a transcriptional tumor suppressor that is implicated in inhibition of tumor growth and metastasis, in regulating NFκB signaling and COX-2. Methods For in vitro experiments, reporter luciferase assays were utilized in MCF7 cells to investigate promoter activity of NFκB and SIM2. Real-time PCR, immunoblotting, immunohistochemistry, and chromatin immunoprecipitation assays were performed in SUM159 and MCF7 cells. For in vivo experiments, MCF10DCIS.COM cells stably expressing SIM2s-FLAG or shPTGS2 were injected into SCID mice and subsequent tumors harvested for immunostaining and analysis. Results Our results reveal that SIM2 attenuates the activation of NFκB as measured using NFκB-luciferase reporter assay. Furthermore, immunostaining of lysates from breast cancer cells overexpressing SIM2s showed reduction in various NFκB signaling proteins, as well as pAkt, whereas knockdown of SIM2 revealed increases in NFκB signaling proteins and pAkt. Additionally, we show that NFκB signaling can act in a reciprocal manner to decrease expression of SIM2s. Likewise, suppressing NFκB translocation in DCIS.COM cells increased SIM2s expression. We also found that NFκB/p65 represses SIM2 in a dose-dependent manner, and when NFκB is suppressed, the effect on the SIM2 is negated. Additionally, our ChIP analysis confirms that NFκB/p65 binds directly to SIM2 promoter site and that the NFκB sites in the SIM2 promoter are required for NFκB-mediated suppression of SIM2s. Finally, overexpression of SIM2s decreases PTGS2 in vitro, and COX-2 staining in vivo while decreasing PTGS2 and/or COX-2 activity results in re-expression of SIM2. Conclusion Our findings identify a novel role for SIM2s in NFκB signaling and COX-2 expression.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Stephane Zingue ◽  
Amstrong Nang Njuh ◽  
Alain Brice Tueche ◽  
Jeremie Tamsa ◽  
Edwige Nana Tchoupang ◽  
...  

The present study was designed to evaluate thein vitroandin vivoantitumor effects ofA. seyalhydroethanolic extract on breast cancer. The cytotoxicity ofA. seyalextract was evaluated using resazurin reduction assay in 9 cell lines. Further, the protective effect of the hydroethanolic extract ofA. seyalstem barks was evaluated on 7,12-dimethylbenz(a)anthracene- (DMBA-) induced breast cancer rat model. Incidence, burden, volume, and histological analysis of mammary tumors were measured. TheAcacia seyalextract exhibited CC50of 100 in MCF-7 cells after 24 h.In vivo, no tumors were detected in rats from the control group, while 11 rats out of 12 (91.66%) developed mammary tumors in the DMBA-exposed group receiving only the vehicle.Acacia seyalextract significantly (p<0.01) and in the dose-dependent manner reduced tumor incidence (3 rats out of 12 at the dose of 300 mg/kg), burden [62.1% (150 mg/kg) and 65.8% (300 mg/kg)], and mass. It protected rats against DMBA-induced breast hyperplasia, with an optimal effect at the dose of 300 mg/kg. Taken altogether, these results suggest that the hydroethanolic extract ofAcacia seyalmight contain phytoconstituents endowed with antitumoral properties, which could protect against the breast cancer induced in rats.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Junsheng Cheng ◽  
Wei Han ◽  
Zheyuan Wang ◽  
Yuan Shao ◽  
Yingzhen Wang ◽  
...  

Euphorbia helioscopiaL. is a traditional Chinese medicine; recently research found that its ethyl acetate extract (EAE) plays an important role on tumor cell proliferation, apoptosis, invasion, and metastasisin vitro. But the effect of EAE for tumor cellsin vivohas not been reported. To explore the inhibitory effect of EAE and molecular mechanism on hepatocellular carcinoma (HCC) SMMC-7721 cellsin vivo, we utilized the nude mouse xenograft model of HCC. Treated with EAE (50, 100, and 200 μg/mL), the volume of xenograft was measured during the entire process of EAE treatment. In EAE treatment group, the volume of xenograft was significantly reduced compared with the control group (P<0.05) and the protein expressions of CyclinD1, bcl-2, and MMP-9 were reduced, while those of bax, caspase-3, and nm23-H1 were increased. A significant change trend with increasing EAE concentrations has presented, compared with controls. Moreover, the ultrastructural morphology of xenografts showed significant changes, including nuclear pyknosis and chromatin condensation, We found that EAE could effectively inhibit tumor growth, induce apoptosis, and inhibit tumor invasion and metastasisin vivo; it is suggested that EAE is a potential candidate for as a new anticancer agent.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huifang Yin ◽  
Guanhong Xue ◽  
Ailing Dai ◽  
Haichong Wu

Mastitis is a worldwide production disease in dairy cows, which mainly affects milk yield, causing huge economic losses to dairy farmers. Lentinan is a kind of polysaccharide extracted from Lentinus edodes, which has no toxicity and possesses various pharmacological activities including antibacterial and immunomodulatory effects. Therefore, the anti-inflammatory function of lentinan on LPS-stimulated mastitis was carried out, and the mechanism involved was explored. In vivo, lentinan greatly reduced LPS-stimulated pathological injury, myeloperoxidase (MPO) activity, and the proinflammatory factor production (TNF-α and IL-1β) in mice. Further study was performed to determine the activation of the Wnt/β-catenin pathway during LPS stimulation. These results suggested that LPS-induced activation of the Wnt/β-catenin pathway was suppressed by lentinan administration. In vitro, we observed that the mouse mammary epithelial cell (mMEC) viability was not affected by lentinan treatment. As expected, LPS increased the TNF-α and IL-1β protein secretion and the activation of the Wnt/β-catenin pathway that was inhibited by lentinan administration in a dose-dependent manner in mMECs. Conclusively, lentinan exerts the anti-inflammatory function in LPS-stimulated mastitis via inhibiting the activation of the Wnt/β-catenin pathway. Thus, the results of our study also gave an insight that lentinan may serve as a potential treatment for mastitis.


2019 ◽  
Vol 12 (5) ◽  
pp. 211-218 ◽  
Author(s):  
Siwaporn Wongsen ◽  
Duangporn Werawatganon ◽  
Somying Tumwasorn

Abstract Background Salmonella typhimurium is a cause of gastroenteritis including diarrhea. Lactobacillus plantarum is a probiotic widely used to prevent and treat diarrhea. Objectives To determine the protective effects of L. plantarum B7 on diarrhea in mice induced by S. typhimurium. Methods Inhibition of S. typhimurium growth by L. plantarum B7 was determined using an agar spot method. Mice were divided into 3 groups (n = 8 each): a control group, an S group administered 3 × 109 CFU/mL S. typhimurium, and an S + LP group administered 1 × 109 CFU/mL L. plantarum B7 and 3 × 109 CFU/mL S. typhimurium daily for 3 days. Counts of S. typhimurium and percentage of fecal moisture content (%FMC) were determined from stool samples. Serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and CXCL1 were determined. Results L. plantarum B7 produced a clear zone on S. typhimurium. There were significantly less S. typhimurium in the feces from mice in the S+LP group than in the S group. Serum levels of TNF-α, IL-6, and CXCL1 in mice from the S group were significantly higher than levels in the S+LP and control groups. Feces from mice in the S group were soft and loose, whereas in the S+LP group they were hard and rod shaped. The %FMC in the S+LP group was significantly less than in the S group. Conclusions L. plantarum B7 can inhibit growth of S. typhimurium, decrease levels of proinflammatory cytokines, and attenuate symptoms of diarrhea induced in mice by S. typhimurium.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wuyang Huang ◽  
Ky Young Cho ◽  
Di Meng ◽  
W. Allan Walker

AbstractAn excessive intestinal inflammatory response may have a role in the pathogenesis of necrotizing enterocolitis (NEC) in very preterm infants. Indole-3-lactic acid (ILA) of breastmilk tryptophan was identified as the anti-inflammatory metabolite involved in probiotic conditioned media from Bifidobacteria longum subsp infantis. This study aimed to explore the molecular endocytic pathways involved in the protective ILA effect against inflammation. H4 cells, Caco-2 cells, C57BL/6 pup and adult mice were used to compare the anti-inflammatory mechanisms between immature and mature enterocytes in vitro and in vivo. The results show that ILA has pleiotropic protective effects on immature enterocytes including anti-inflammatory, anti-viral, and developmental regulatory potentials in a region-dependent and an age-dependent manner. Quantitative transcriptomic analysis revealed a new mechanistic model in which STAT1 pathways play an important role in IL-1β-induced inflammation and ILA has a regulatory effect on STAT1 pathways. These studies were validated by real-time RT-qPCR and STAT1 inhibitor experiments. Different protective reactions of ILA between immature and mature enterocytes indicated that ILA’s effects are developmentally regulated. These findings may be helpful in preventing NEC for premature infants.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Tung-Hu Tsai ◽  
Yu-Jen Chen ◽  
Li-Ying Wang ◽  
Chen-Hsi Hsieh

This study was performed to evaluate the interaction between conventional or high-dose radiotherapy (RT) and the pharmacokinetics (PK) of regorafenib in concurrent or sequential regimens for the treatment of hepatocellular carcinoma. Concurrent and sequential in vitro and in vivo studies of irradiation and regorafenib were designed. The interactions of RT and regorafenib in vitro were examined in the human hepatoma Huh-7, HA22T and Hep G2 cell lines. The RT–PK phenomenon and biodistribution of regorafenib under RT were confirmed in a free-moving rat model. Regorafenib inhibited the viability of Huh-7 cells in a dose-dependent manner. Apoptosis in Huh-7 cells was enhanced by RT followed by regorafenib treatment. In the concurrent regimen, RT decreased the area under the concentration versus time curve (AUC)regorafenib by 74% (p = 0.001) in the RT2 Gy × 3 fraction (f’x) group and by 69% (p = 0.001) in the RT9 Gy × 3 f’x group. The AUCregorafenib was increased by 182.8% (p = 0.011) in the sequential RT2Gy × 1 f’x group and by 213.2% (p = 0.016) in the sequential RT9Gy × 1 f’x group. Both concurrent regimens, RT2Gy × 3 f’x and RT9Gy × 3 f’x, clearly decreased the biodistribution of regorafenib in the heart, liver, lung, spleen and kidneys, compared to the control (regorafenib × 3 d) group. The concurrent regimens, both RT2Gy × 3 f’x and RT9Gy × 3 f’x, significantly decreased the biodistribution of regorafenib, compared with the control group. The PK of regorafenib can be modulated both by off-target irradiation and stereotactic body radiation therapy (SBRT).


2012 ◽  
Vol 303 (10) ◽  
pp. F1443-F1453 ◽  
Author(s):  
Chung-Hsi Hsing ◽  
Chiou-Feng Lin ◽  
Edmund So ◽  
Ding-Ping Sun ◽  
Tai-Chi Chen ◽  
...  

Bone morphogenetic protein (BMP)-7 protects sepsis-induced acute kidney injury (AKI). Dexmedetomidine (DEX), an α2-adrenoceptor (α2-AR) agonist, has anti-inflammatory effects. We investigated the protective effects of DEX on sepsis-induced AKI and the expression of BMP-7 and histone deacetylases (HDACs). In vitro , the effects of DEX or trichostatin A (TSA, an HDAC inhibitor) on TNF-α, monocyte chemotactic protein (MCP-1), BMP-7, and HDAC mRNA expression in LPS-stimulated rat renal tubular epithelial NRK52E cells, was determined using real-time PCR. In vivo, mice were intraperitoneally injected with DEX (25 μg/kg) or saline immediately and 12 h after cecal ligation and puncture (CLP) surgery. Twenty-four hours after CLP, we examined kidney injury and renal TNF-α, MCP-1, BMP-7, and HDAC expression. Survival was monitored for 120 h. LPS increased HDAC2, HDAC5, TNF-α, and MCP-1 expression, but decreased BMP-7 expression in NRK52E cells. DEX treatment decreased the HDAC2, HDAC5, TNF-α, and MCP-1 expression, but increased BMP-7 and acetyl histone H3 expression, whose effects were blocked by yohimbine, an α2-AR antagonist. With DEX treatment, the LPS-induced TNF-α expression and cell death were attenuated in scRNAi-NRK52E but not BMP-7 RNAi-NRK52E cells. In CLP mice, DEX treatment increased survival and attenuated AKI. The expression of HDAC2, HDAC5, TNF-α, and MCP-1 mRNA in the kidneys of CLP mice was increased, but BMP-7 was decreased. However, DEX treatment reduced those changes. DEX reduces sepsis-induced AKI by decreasing TNF-α and MCP-1 and increasing BMP-7, which is associated with decreasing HDAC2 and HDAC5, as well as increasing acetyl histone H3.


2012 ◽  
Vol 40 (06) ◽  
pp. 1241-1255 ◽  
Author(s):  
Sae-Kang Ku ◽  
Jae-Soo Kim ◽  
Young-Bae Seo ◽  
Yong-Ung Kim ◽  
Seung-Lark Hwang ◽  
...  

This study was performed to investigate effects of Curculigo orchioides rhizome (curculiginis rhizome) on acute reflux esophigitis (RE) in rats that are induced by pylorus and forestomach ligation operation. Proinflammatory cytokine, as well as tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 were all assayed and the expression of TNF-α and COX2 analyzed by RT-PCR. The esophagic tissue damage of reflux esophagitis rat was increased compared to that of normal intact group. However, the esophagic damage percentage from the extract of curculiginis rhizoma (ECR) 600 mg/kg and ECR 300 mg/kg were significantly lower than that of the RE control group. Administration of α-tocopherol (30 mg/kg) and ECR (600 mg/kg, 300 mg/kg, and 150 mg/kg) had a significant effect on the gastric acid pH in rats with induced reflux esophagitis (p < 0.05). The treatment with ECR significantly reduced the production of cytokines TNF-α, IL-1β and IL-6 levels compared to the model group (p < 0.05). The expression of TNF-α and COX2 in the intact esophageal mucosa was low while those of the RE control group were significantly higher due to an inflammatory reaction in the esophagus. Compare to the model group, treatment with α-tocopherol or ECR significantly inhibited the expression levels of COX2 and TNF-α in a dose-dependent manner. These results suggest that anti-inflammatory and protective effects of ECR could attenuate the severity of reflux esophagitis and prevent esophageal mucosal damage.


Sign in / Sign up

Export Citation Format

Share Document