scholarly journals Machine Learning to Predict Post-Operative Acute Kidney Injury Stage 3 After Heart Transplantation

Author(s):  
Tingyu Li ◽  
Yuelong Yang ◽  
Jinsong Huang ◽  
Rui Chen ◽  
Yijin Wu ◽  
...  

Abstract Background Acute kidney injury (AKI) stage 3, one of the most severe complications in patients with heart transplantation (HT), is associated with substantial morbidity and mortality. We aimed to develop a machine learning (ML) model to predict post-transplant AKI stage 3 based on preoperative and perioperative features. Methods Data from 107 consecutive HT recipients in the provincial center between 2018 and 2020 were included for analysis. Logistic regression with L2 regularization was used for the ML model building. The predictive performance of the ML model was assessed using the area under the curve (AUC) in 10-fold stratified cross-validation and was compared with that of the existing clinical metrics. Results Post-transplant AKI occurred in 71 (66.3%) patients including 13 (12.1%) stage 1, 13 (12.1%) stage 2, and 45 (42.1%) stage 3 cases. The top four features selected for the ML model to predicate AKI stage 3 were serum cystatin C, estimated glomerular filtration rate (eGFR), right atrial long-axis dimension, and serum creatinine (SCr). The predictive performance of the ML model (AUC: 0.828; 95% confidence interval [CI]: 0.745–0.913) was significantly higher compared with that of the existing clinical metrics including eGFR (AUC: 0.694; 95%[CI]: 0.594–0.795, p < 0.05) and SCr (AUC: 0.525; 95%[CI]: 0.411–0.636), p < 0.001). Conclusions The ML model, which achieved an effective predictive performance for post-transplant AKI stage 3, may be helpful for timely intervention to improve the patient’s prognosis.

2020 ◽  
Vol 9 (4) ◽  
pp. 905
Author(s):  
Marilou Peillex ◽  
Benjamin Marchandot ◽  
Sophie Bayer ◽  
Eric Prinz ◽  
Kensuke Matsushita ◽  
...  

Acute kidney injury (AKI) following transcatheter aortic valve replacement (TAVR) is associated with a dismal prognosis. Elevated renal resistive index (RRI), through renal Doppler ultrasound (RDU) evaluation, has been associated with AKI development and increased systemic arterial stiffness. Our pilot study aimed to investigate the performance of Doppler based RRI to predict AKI and outcomes in TAVR patients. From May 2018 to May 2019, 100 patients with severe aortic stenosis were prospectively enrolled for TAVR and concomitant RDU evaluation at our institution (Nouvel Hôpital Civil, Strasbourg University, France). AKI by serum Creatinine (sCr-AKI) was defined according to the VARC-2 definition and AKI by serum Cystatin C (sCyC-AKI) was defined as an sCyC increase of greater than 15% with baseline value. Concomitant RRI measurements as well as renal and systemic hemodynamic parameters were recorded before, one day, and three days after TAVR. It was found that 10% of patients presented with AKIsCr and AKIsCyC. The whole cohort showed higher baseline RRI values (0.76 ± 0.7) compared to normal known and accepted values. AKIsCyC had significant higher post-procedural RRI one day (Day 1) after TAVR (0.83 ± 0.1 vs. 0.77 ± 0.6, CI 95%, p = 0.005). AUC for AKIsCyC was 0.766 and a RRI cut-off value of ≥ 0.795 had the most optimal sensitivity/specificity (80/62%) combination. By univariate Cox analysis, Mehran Risk Score, higher baseline right atrial pressure at baseline >0.8 RRI values one day after TAVR (HR 6.5 (95% CI 1.3–32.9; p = 0.021) but not RRI at baseline were significant predictors of AKIsCyC. Importantly, no significant impact of baseline biological parameters, renal or systemic parameters could be demonstrated. Doppler-based RRI can be helpful for the non-invasive assessment of AKI development after TAVR.


Author(s):  
Iacopo Vagliano ◽  
Oleksandra Lvova ◽  
Martijn C. Schut

Acute kidney injury (AKI) is a common and potentially life-threatening condition, which often occurs in the intensive care unit. We propose a machine learning model based on recurrent neural networks to continuously predict AKI. We internally validated its predictive performance, both in terms of discrimination and calibration, and assessed its interpretability. Our model achieved good discrimination (AUC 0.80-0.94). Such a continuous model can support clinicians to promptly recognize and treat AKI patients and may improve their outcomes.


Author(s):  
Yuxian Kuai ◽  
Hui Huang ◽  
Xiaomei Dai ◽  
Zhongyue Zhang ◽  
Zhenjiang Bai ◽  
...  

Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 782-P
Author(s):  
LANTING YANG ◽  
NICO GABRIEL ◽  
INMACULADA HERNANDEZ ◽  
ALMUT G. WINTERSTEIN ◽  
STEPHEN KIMMEL ◽  
...  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Enrico Favaro ◽  
Roberta Lazzarin ◽  
Daniela Cremasco ◽  
Erika Pierobon ◽  
Marta Guizzo ◽  
...  

Abstract Background and Aims The modern development of the black box approach in clinical nephrology is inconceivable without a logical theory of renal function and a comprehension of anatomical architecture of the kidney, in health and disease: this is the undisputed contribution offered by Malpighi, Oliver and Trueta starting from the seventeenth century. The machine learning model for the prediction of acute kidney injury, progression of renal failure and tubulointerstitial nephritis is a good example of how different knowledge about kidney are an indispensable tool for the interpretation of model itself. Method Historical data were collected from literature, textbooks, encyclopedias, scientific periodicals and laboratory experimental data concerning these three authors. Results The Italian Marcello Malpighi (1628-1694), born in Crevalcore near Bologna, was Professor of anatomy at Bologna, Pisa and Messina. The historic description of the pulmonary capillaries was made in his second epistle to Borelli published in 1661 and intitled De pulmonibus, by means of the frog as “the microscope of nature” (Fig. 1). It is the first description of capillaries in any circulation. William Harvey in De motu cordis in 1628 (year of publication the same of date of birth of Italian anatomist!) could not see the capillary vessels. This thriumphant discovery will serve for the next reconnaissance of characteristic renal rete mirabile.in the corpuscle of Malpighi, lying within the capsule of Bowman. Jean Redman Oliver (1889-1976), a pathologist born and raised in Northern California, was able to bridge the gap between the nephron and collecting system through meticulous dissections, hand drawn illustrations and experiments which underpin our current understanding of renal anatomy and physiology. In the skillful lecture “When is the kidney not a kidney?” (1949) Oliver summarizes his far-sighted vision on renal physiology and disease in the following sentence: the Kidney in health, if you will, but the Nephrons in disease. Because, the “nephron” like the “kidney” is an abstraction that must be qualified in terms of its various parts, its cellular components and the molecular mechanisms involved in each discrete activity (Fig. 2). The Catalan surgeon Josep Trueta I Raspall (1897-1977) was born in the Poblenou neighborhood of Barcelona. His impact of pioneering and visionary contribution to the changes in renal circulation for the pathogenesis of acute kidney injury was pivotal for history of renal physiology. “The kidney has two potential circulatory circulations. Blood may pass either almost exclusively through one or other of two pathways, or to a varying degree through both”. (Studies of the Renal Circulation, published in 1947). Now this diversion of blood from cortex to the less resistant medullary circulation is known with the eponym Trueta shunt. Conclusion The black box approach to the kidney diseases should be considered by practitioners as a further tool to help to inform model update in many clinical setting. The number of machine learning clinical prediction models being published is rising, as new fields of application are being explored in medicine (Fig. 3). A challenge in the clinical nephrology is to explore the “kidney machine” during each therapeutic diagnostic procedure. Always, the intriguing relationship between the set of nephrological syndromes and kidney diseases cannot disregard the precious notions the specific organization of kidney microcirculation, fruit of many scientific contributions of the work by Malpighi, Oliver and Trueta (Fig. 3).


2020 ◽  
Vol 20 (4) ◽  
pp. e312-317
Author(s):  
Folake M. Afolayan ◽  
Olanrewaju T. Adedoyin ◽  
Mohammed B. Abdulkadir ◽  
Olayinka R. Ibrahim ◽  
Sikiru A. Biliaminu ◽  
...  

Objectives: Serum creatinine levels are often used to diagnose acute kidney injury (AKI), but may not necessarily accurately reflect changes in glomerular filtration rate (GFR). This study aimed to compare the prevalence of AKI in children with severe malaria using diagnostic criteria based on creatinine values in contrast to cystatin C. Methods: This prospective cross-sectional study was performed between June 2016 and May 2017 at the University of Ilorin Teaching Hospital, Ilorin, Nigeria. A total of 170 children aged 0.5–14 years old with severe malaria were included. Serum cystatin C levels were determined using a particle-enhanced immunoturbidmetric assay method, while creatinine levels were measured using the Jaffe reaction. Renal function assessed using cystatin C-derived estimated GFR (eGFR) was compared to that measured using three sets of criteria based on creatinine values including the Kidney Disease: Improved Global Outcomes (KDIGO) and World Health Organization (WHO) criteria as well as an absolute creatinine cut-off value of >1.5 mg/dL. Results: Mean serum cystatin C and creatinine levels were 1.77 ± 1.37 mg/L and 1.23 ± 1.80 mg/dL, respectively (P = 0.002). According to the KDIGO, WHO and absolute creatinine criteria, the frequency of AKI was 32.4%, 7.6% and 16.5%, respectively. In contrast, the incidence of AKI based on cystatin C-derived eGFR was 51.8%. Overall, the rate of detection of AKI was significantly higher using cystatin C compared to the KDIGO, WHO and absolute creatinine criteria (P = 0.003, <0.001 and <0.001, respectively). Conclusion: Diagnostic criteria for AKI based on creatinine values may not indicate the actual burden of disease in children with severe malaria. Keywords: Biomarkers; Acute Kidney Injury; Renal Failure; Glomerular Filtration Rate; Cystatin C; Creatinine; Malaria; Nigeria.


Sign in / Sign up

Export Citation Format

Share Document