Structural, Morphological and Optical Bandgap Analysis of Multifunction Applications of Y2O3 -ZnO Nanocomposites : Varistors and Visible Photocatalytic Degradations of Wastewater

Author(s):  
T.H AlAbdulaal ◽  
Manal AlShadidi ◽  
Mai Hussien ◽  
Ganesh Vanga ◽  
Abdel-Fatah Bouzidi ◽  
...  

Abstract In this study, a combustion method as an efficient, easy, low-cost, and eco-friendly technique was used to synthesize nano-ZnO as a matrix with different yttrium doping ratios with different doping concentrations. Not only X-ray diffraction (XRD), but also scanning electron microscopy (SEM), and Fourier transformation Infrared spectroscopy (FT-IR) technique employed to characterize the structural and surface morphology of the Y2O3-ZnO nanocomposites. The obtained results supported ZnO's growth from crystalline to satisfactory nanoparticle structure by changing the yttrium doping concentrations inside ZnO nanoparticles. Moreover, UV-Vis diffuse reflectance spectroscopy, AC electrical conductivity, and current-voltage characteristics were considered to characterize the effects of yttrium doping on the energy bandgaps and electrical/dielectric properties and discussed the parameters of the ceramic varistors of the studied Y2O3-ZnO nano-complex oxides. The photocatalytic degradation efficiency of phenol, Methylene Blue, and Rhodamine B was investigated using all prepared Y2O3-ZnO nanostructured samples. As the yttrium doping ratios increased, the photocatalytic efficiency increased. After the addition of moderate Y3+ ions-doping, Further generation of hydroxyl radicals over ZnO. For Y2O3-ZnO (S5), the optimal photocatalyst is a degradation of 100 % of phenol, Methylene Blue, and Rhodamine B solutions compared to 80% of photocatalysis for ZnO stand alone. The prepared Y2O3-ZnO nanostructured materials are considered novel potential candidates in broad nano-applications ranging from biomedical and photocatalytic degradation for organic dyes and phenol to environmental and varistor applications.

Author(s):  
Matheus Gomes Ferreira ◽  
Henrique Cesar Abreu do Nascimento Telles Rodrigues ◽  
Francisco Manoel dos Santos Garrido ◽  
Marta Eloisa Medeiros

Improper disposal of effluent contaminated with organic dyes may cause environmental problems. In this context, the ZnO semiconductor and the ZnO/ZnFe2O4 magnetic composite were prepared by the combustion method. The synthesized materials showed adsorption and photocatalysis properties for elimination of methylene blue dye from aqueous medium. About 88% of the methylene blue was eliminated by ZnO and 63% by the composite. In the photocatalysis process, a low cost visible light source was used. These materials can be regenerated by a photo-Fenton process. Moreover, the ZnO/ZnFe2O4 composite can be separated from the reaction medium by a magnetic field.


2017 ◽  
Vol 76 (8) ◽  
pp. 2120-2132 ◽  
Author(s):  
Q. Song ◽  
L. Li ◽  
N. Zhuo ◽  
H. N. Zhang ◽  
X. Chen ◽  
...  

Taking cetyltrimethylammonium bromide (CTAB) as the template and using TiO2 as the substrate, coral-globular-like composite Ag/TiO2-SnO2 (CTAB) was successfully synthesized by the sol–gel combined with a temperature-programmed treatment method. X-ray diffraction, scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, SEM combined with X-ray energy dispersive spectroscopy, and N2 adsorption–desorption tests were employed to characterize samples' crystalline phase, chemical composition, morphology and surface physicochemical properties. Results showed that composites not only had TiO2 anatase structure, but also had some generated SnTiO4, and the silver species was metallic Ag0. Ag/TiO2-SnO2 (CTAB) possessed a coral-globular-like structure with nanosheets in large quantities. The photocatalytic activity of Ag/TiO2-SnO2 (CTAB) had studied by degrading organic dyes under multi-modes, mainly using rhodamine B as the model molecule. Results showed that the coral-globular-like Ag/TiO2-SnO2 (CTAB) was higher photocatalytic activity than that of commercial TiO2, Ag/TiO2-SnO2, TiO2-SnO2 (CTAB), and TiO2-SnO2 under ultraviolet light irradiation. Moreover, Ag/TiO2-SnO2 (CTAB) composite can significantly affect the photocatalytic degradation under multi-modes including UV light, visible light, simulated solar light and microwave-assisted irradiation. Meanwhile, the photocatalytic activity of Ag/TiO2-SnO2 (CTAB) was maintained even after three cycles, indicating that the catalyst had good usability.


2021 ◽  
Author(s):  
Fathima Fasna P H ◽  
Sreesha Sasi ◽  
Bindu Sharmila T K ◽  
Julie Chandra C S ◽  
Jolly V Antony ◽  
...  

Abstract Photocatalytic degradation of organic dyes under visible light and ultraviolet radiation is an efficient strategy for effluent treatment. This work describes the design of novel Cu(II) complexes using the ligand N'-(3-hydroxy-4-methoxybenzylidene)nicotinohydrazide and their application in the photocatalytic degradation of the organic dye, methylene blue (MB). The photocatalytic degradation of MB follows pseudo first-order kinetics with high correlation coefficient values (R2> 0.95), making them useful as simple and low-cost organic dye degradation agents. The antibacterial screening studies of the ligand and the Cu(II) complexes by disc diffusion method show the systems to exhibit activity against Escherichia coli (gram negative) and Bacillus circulans (gram positive).


2019 ◽  
Vol 7 (2) ◽  
pp. 240-246
Author(s):  
Kaur Harpreet ◽  
Kaur Harpreet ◽  
Vandana Kamboj ◽  
Vandana Kamboj

Water is the most crucial thing to mankind and so its contamination by various agencies is posing a threat to the natural balance. So, in the present work, the efficiency of various adsorbents derived from plant waste, to remove different dyes from aqueous solution was evaluated. Parameters for study were contact time, concentration and pH. Various combinations of plant ashes were used for the study. It was found that adsorbent prepared from the combination of orange peels, pomegranate and banana peels ashes, exhibited good adsorption capacity for methylene blue, congo red and crystal violet. All these dyes were completely removed from the aqueous solution while methyl orange was not removed. Congo red was removed completely within 40 min of contact with the adsorbent while methyl orange took 3 hrs to be removed to the extent of 48% only. The adsorption coefficient of congo red was found to be 2.33 while value for methylene blue and crystal violet was 1 and 1.66 respectively. The characterization of adsorbent was done by Scanning Electron Microscopy and IR spectroscopy. SEM image revealed the surface of adsorbent to be made of differential pores. From the results it became evident that the low-cost adsorbent could be used as a replacement for costly traditional methods of removing colorants from water.


2019 ◽  
Vol 25 (4) ◽  
pp. 536-544 ◽  
Author(s):  
Zhaogang Ren ◽  
Fang Chen ◽  
Bin Wang ◽  
Zhongxian Song ◽  
Ziyu Zhou ◽  
...  

To address organic dye wastewater, economic and effective adsorbents are required. Here, magnetic biochar from alkali-activated rice straw (AMBC) was successfully synthesized using one-step magnetization and carbonization method. The alkaline activation caused the large specific surface area, high pore volume and abundant oxygen-containing groups of the AMBC, and the magnetization gave the AMBC a certain degree of electropositivity and fast equilibrium characteristics. These characteristics collectively contributed to a relative high adsorption capacity of 53.66 mg g<sup>−1</sup> for this adsorbent towards rhodamine B (RhB). In brief, RhB can spontaneously adsorb onto the heterogeneous surface of the AMBC and reach the equilibrium in 60 min. Although the initial pH, ionic strength and other substances of the solution affected the adsorption performance of the AMBC, it could be easily regenerated and reused with considerable adsorption content. Based on the results, H-bonds, π–π stacking and electrostatic interactions were speculated as the primary mechanisms for RhB adsorption onto the AMBC, which was also demonstrated by the FTIR analysis. With the advantageous features of low cost, easy separation, considerable adsorption capacity and favorable stability and reusability, the AMBC would be a potential adsorbent for removing organic dyes from wastewater.


2021 ◽  
Vol 21 (7) ◽  
pp. 3882-3886
Author(s):  
Yong-Wook Jung ◽  
Jong Kyu Kim

In this study, nano-sized low cost titanium dioxide (TFS) was prepared using sludge from sewage treatment and performance was verified. To remove air pollutants, the photocatalytic degradation of methylene blue and efflorescence characteristics is assessed according to the mixing ratio of the nano-sized TFS by applying them to concrete sidewalk blocks. The photocatalytic degradation performance of concrete sidewalk blocks shows that the methylene blue removal rate of specimens containing 2.5%, 5%, and 10% of nano-sized TFS is 29%, 27%, and 38%, respectively. When the nano-sized TFS is mingled on the surface of the sidewalk block, the performance of anti-corrosion and antifouling showed excellency mainly due to the moisture blocking derived by the antifouling function of photocatalysts.


2016 ◽  
Vol 55 (2) ◽  
pp. 1713-1723 ◽  
Author(s):  
Debora Luiza Postai ◽  
Carla Albertina Demarchi ◽  
Francielle Zanatta ◽  
Danielle Caroline Cipriani Melo ◽  
Clóvis Antonio Rodrigues

2013 ◽  
Vol 6 (2) ◽  
pp. 245-255 ◽  
Author(s):  
Dongfang Zhang

Abstract In this study, mixed phase ZnO-TiO2 nanocomposite consisting of hexagonal ZnO and anatase/rutile TiO2 has been synthesized via sol-gel process.The physical and photochemical properties of samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminscience spectra (PL) and and photocurrent action spectra techniques. In the case of minerlization of rhodamine B (RhB) and malachite green (MG) dyes, the coupled ZnO-TiO2 nanocomposite with the suitable band structure and the lowest photoluminescence intensity showed the best photodecolorization activity. Synergistic effects between the two oxides for photocatalytic decomposition of RhB and MG are proposed to elucidate the decolorization mechanism. The lifetime of electrons and holes was prolonged in the ZnO-anatase/rutile multiple-component system, which can enhance the light harvest and the ability of generating photo-induced electron-hole pairs of active sites, and the favorable electron-transfer properties in the coupled ZnO-TiO2 nanocomposite. Therefore, the as-prepared ZnO-TiO2 nanocomposite showed an excellent efficiency towards the removal of aqueous organic dyes and it is of certain significance for environmental photocatalysis.


RSC Advances ◽  
2016 ◽  
Vol 6 (33) ◽  
pp. 27416-27425 ◽  
Author(s):  
Mahnaz Saghanejhad Tehrani ◽  
Rouholah Zare-Dorabei

In this work, metal organic framework (MIL-68(Al)), was synthesized by a simple, fast and low-cost process for simultaneous removal of methylene blue and Rhodamine B, regarded to be toxic and even carcinogenic, from aqueous solution.


2021 ◽  
Author(s):  
Rui Zhang ◽  
ziyin chen ◽  
Chen Zhao ◽  
Kunlin Zeng ◽  
Lu Cai ◽  
...  

Abstract A novel binary BiSI/Ag2CO3 photocatalyst with excellent visible light-driven photocatalytic performance was prepared. The products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) and electrochemical impedance spectroscopy (EIS). The photocatalytic activity of the samples were evaluated by photocatalytic degradation of rhodamine B(RhB) under the irradiation of visible light. The results showed that the BiSI improves the photocatalytic activity of BiSI/Ag2CO3. Moreover, when the mass ratio of BiSI in BiSI/Ag2CO3 composites was 40%, the as-prepared BiSI/Ag2CO3 composite exhibited the best photocatalytic activity for degrading RhB. Finally, the possible mechanism for photodegradation over the BiSI/Ag2CO3 composites is also proposed.


Sign in / Sign up

Export Citation Format

Share Document