scholarly journals Historical trends in Crop Water demand over Semi-Arid region of Syria

Author(s):  
Rajab Homsi ◽  
Shamsuddin Shahid ◽  
Zafar Iqbal ◽  
Atif Muhammad Ali ◽  
Ghaith Falah Ziarh

Abstract Climate change has caused a shift in aridity, particularly in the dry regions of the world which may subsequently affect several sectors predominantly the agricultural and water resources. This research examined the climate change effects on crop water demand (CWD) in Syria over the period 1951–2010. Given the lack of observed data, this analysis relied on (GPCC) precipitation and (CRU) temperature data from 1951 to 2010. Potential Evapotranspiration (PET) at each grid was calculated using Penman-Monteith method and FAO-56 model was used to calculate the crop water demand (CWD). The analysis revealed that CWD in Syria increased from 1981 to 2010 when compared to 1951–1980.The increase in CWD has been found for all the crops except wheat, whereas the maximum changes are found during April, and May. The differences in CWD for Barley between the two periods were found to be in the range of -20 to 40 mm. A decrease in CWD observed in the south of the country. However, a rise in 0 to 20 mm range was also discovered in the north. The CWD for wheat was found to decline in most parts of the country. However, it was found to increase in the north. The increase in CWD for barley and wheat has increased agricultural water stress in the region. Several agriculture planning needs to be developed in accordance with the expected future climate changes in order to maintain the agricultural production in the region.

2020 ◽  
Vol 12 (8) ◽  
pp. 3437 ◽  
Author(s):  
Saleem A. Salman ◽  
Shamsuddin Shahid ◽  
Haitham Abdulmohsin Afan ◽  
Mohammed Sanusi Shiru ◽  
Nadhir Al-Ansari ◽  
...  

Decreases in climatic water availability (CWA) and increases in crop water demand (CWD) in the background of climate change are a major concern in arid regions because of less water availability and higher irrigation requirements for crop production. Assessment of the spatiotemporal changes in CWA and CWD is important for the adaptation of irrigated agriculture to climate change for such regions. The recent changes in CWA and CWD during growing seasons of major crops have been assessed for Iraq where rapid changes in climate have been noticed in recent decades. Gridded precipitation of the global precipitation climatology center (GPCC) and gridded temperature of the climate research unit (CRU) having a spatial resolution of 0.5°, were used for the estimation of CWA and CWD using simple water balance equations. The Mann–Kendall (MK) test and one of its modified versions which can consider long-term persistence in time series, were used to estimate trends in CWA for the period 1961–2013. In addition, the changes in CWD between early (1961–1990) and late (1984–2013) periods were evaluated using the Wilcoxon rank test. The results revealed a deficit in water in all the seasons in most of the country while a surplus in the northern highlands in all the seasons except summer was observed. A significant reduction in the annual amount of CWA at a rate of −1 to −13 mm/year was observed at 0.5 level of significance in most of Iraq except in the north. Decreasing trends in CWA in spring (−0.4 to −1.8 mm/year), summer (−5.0 to −11 mm/year) and autumn (0.3 to −0.6 mm/year), and almost no change in winter was observed. The CWA during the growing season of summer crop (millet and sorghum) was found to decrease significantly in most of Iraq except in the north. The comparison of CWD revealed an increase in agricultural water needs in the late period (1984–2013) compared to the early period (1961–1990) by 1.0–8.0, 1.0–14, 15–30, 14–27 and 0.0–10 mm for wheat, barley, millet, sorghum and potato, respectively. The highest increase in CWD was found in April, October, June, June and April for wheat, barley, millet, sorghum and potato, respectively.


2019 ◽  
Vol 5 (4) ◽  
pp. 1859-1875 ◽  
Author(s):  
Alemu Ademe Bekele ◽  
Santosh Murlidhar Pingale ◽  
Samuel Dagalo Hatiye ◽  
Alemayehu Kasaye Tilahun

2004 ◽  
pp. 273-278
Author(s):  
D. Neilsen ◽  
C.A.S Smith ◽  
G. Frank ◽  
W.O. Koch ◽  
P. Parchomchuk

Author(s):  
Nguyen Thi Hoang Anh ◽  
Mai Kim Lien

Climate change is driving dangerous and more unpredictable weather. It has broken historical records of hydro-meteorological observations, consequently leading challenges in operational forecasting. In order to improve crop yield and reduce impacts of climate change on agricultural production, it is necessary to obtain sources of weather information. The estimations of rainfall and PET can enable us to identify plant growth and water supply capacity for any plant in the mountainous areas at Quy Hop District, Nghe An (one part of the North Central Coast) on a monthly basis. The updated information on weather forecasting technology and the application of modern technology responding to climate change in Quy Hop provided results related to cumulative rainfall chart. It can forecast accurately the plant growth and the best time for watering plants and plays an important role in the agricultural production.  


Author(s):  
Rajab Homsi ◽  
Shamsuddin Shahid ◽  
Zafar Iqbal ◽  
Atif Muhammad Ali ◽  
Ghaith Falah Ziarh

2020 ◽  
Author(s):  
Andrew J. Wade ◽  
Harvey J.E. Rodda ◽  
Nicholas P. Branch ◽  
Marcos Bruzzone ◽  
Alex Herrera ◽  
...  

<p>The aim of the ACCESS project is to help assess the impact of climate change on socio-economic development in the Peruvian Andes, focused on the Ancash region, and to help identify adaptation strategies. As part of this larger effort, we are aiming to understand how climate change will impact: water availability and quality; farming, lives and livelihoods; and to work with local communities to plan adaptation strategies. The current water supply and demand in two catchments in the Cordillera Blanca and two in the Cordillera Negra is being assessed to understand the background water context in contrasting glaciated and non-glaciated landscapes. Based on detailed surveys of the ancient and modern waterscapes led by South American archaeologists, supplemented by more recent data from hydrological measurement and ethnographic surveys and discussions with local communities, a nuanced picture is emerging of how communities have adapted to past and current climate conditions, and potential solutions are being co-developed with the local communities to maintain and improve livelihoods in situations with low rainfall in the Negra and glacial retreat in the Blanca. Crop water demand during the dry season in the Rio Ancash (114 km<sup>2</sup>) catchment has been assessed using the CROPWAT model and local climate and crop survey data, and the present-day water supply assessed through the gauging of rivers and irrigation canal flows, and measurement of water quality and isotopes. Preliminary results, for the Rio Ancash, suggest the amount of water available for dry season irrigation on the mid-slopes is approximately 70 mm over the cropped area (57 km<sup>2</sup>) which appears to be less than the crop water demand, though this estimate may change as more data is processed. Initial climate projections suggestion an increase in water as the glaciers melt until around 2050. The dry season crop water demand and supply beyond 2050 is currently being estimated.</p>


2021 ◽  
pp. 9-15
Author(s):  
A. G. Yeghiazaryan ◽  
P. S. Efendyan ◽  
G. M. Yeghiazaryan ◽  
L. G. Tovmasyan

The studies in GIS environment have been conducted on the example of Lori region. The investigations are based on the spatial changes of irrigation zones and agro-climatic conditions of Armenia. During the research, irrigation water and crop water demand has been estimated in the following climate change conditions: T +2° C and 0.9 P (T - estimated air temperature, P - atmosphertic precipitations). In case of 5 %, 25 %, 50 %, 75 % and 95 % atmospheric precipitations the water intake from water source has been changed. Maximum water requirement for vegetable and cereal crops, as well as for perennial plantations per irrigation zones has been forecasted.


2019 ◽  
Vol 24 (1) ◽  
pp. 32-45
Author(s):  
Laxmi Goparaju ◽  
Firoz Ahmad

Abstract Climate change has very significant impact on livelihoods and food security. The geospatial technology provides a better understanding of various themes related to climate change. This study examined the seasonal (kharif, rabi and zaid) long term (1970-2000) monthly climatic parameters such as precipitation, potential evapotranspiration over the country of India. The seasonal Aridity Index was computed and analyzed with respect to various agro-ecological zones of India. The analysis of long term mean precipitation (mm) during kharif, rabi and zaid season was found to be in the range of (14-7463), (0-914) and (0-1722) respectively. The analyses of the long term mean potential evapotranspiration in all seasons was found notable high in arid/semiarid zones. The Aridity Index during kharif, rabi and zaid seasons was found to be in the range of (0.19-4.27), (0.03-0.73) and (0.01-1.48) respectively. The seasonal Aridity Index in some of the agro-ecological zones of the central India in the arid and semiarid regions was found to be notably low. A concrete plan with synergic approach including integrated watershed management and traditional ecological practices will help to fulfill crop water demand and maintain adequate soil moisture for the present and future crops.


2020 ◽  
Vol 12 (24) ◽  
pp. 10420
Author(s):  
Ioannis Chatziioannou ◽  
Efthimios Bakogiannis ◽  
Charalampos Kyriakidis ◽  
Luis Alvarez-Icaza

One of the biggest challenges of our time is climate change. Every day, at different places of the world, the planet sends alarming messages about the enormous transformations it is experiencing due to human-based activities. The latter are responsible for changing weather patterns that threaten food production, energy production and energy consumption, the desertification of land, the displacement of people and animals because of food and water shortages due to the reductions in rainfall, natural disasters and rising sea levels. The effects of climate change affect us all, and if drastic measures are not considered in a timely manner, it will be more difficult and costly to adapt to the aforementioned effects in the future. Considering this context, the aim of this work is to implement a prospective study/structural analysis to the identified sectors of a regional plan of adaptation to climate change so as to promote the resilience of the region against the negative phenomena generated by the climate crisis. This was achieved in two steps: first, we identified the relationships between the strategic sectors of the plan and organized them in order of importance. Second, we assessed the effectiveness of several public policies oriented towards a city’s resilience according to their impact upon the strategic sectors of the plan and the co-benefits generated by their implementation for society. The results highlight that the most essential sectors for the mitigation of climate change are flood risk management, built environment, forest ecosystem management, human health, tourism and rise in sea level. As a consequence, the most important measures for the resilience of the North Aegean Region against climate change are the ones related to the preparation of strategic master plans for flood protection projects.


Sign in / Sign up

Export Citation Format

Share Document