scholarly journals Convolutional Neural Network for Classification of Eight types of Arrhythmia using 2D Time-Frequency Feature Map from Standard 12-Lead Electrocardiogram

Author(s):  
Da Un Jeong ◽  
Ki Moo Lim

Abstract Electrocardiograms (ECGs) are widely used for diagnosing cardiac arrhythmia based on the deformation of signal shapes due to changes in various heart diseases. However, these abnormal signs may not be observed in some of the 12 ECG channels, depending on the location or shape of the heart and the type of cardiac arrhythmia. Therefore, to accurately diagnose cardiac arrhythmias, it is necessary to closely and comprehensively observe ECG signals acquired from 12 channel electrodes. In this study, we proposed a clustering algorithm that can classify persistent cardiac arrhythmia as well as episodic cardiac arrhythmias using the standard 12-lead ECG signals and the 2D CNN model using the time-frequency feature maps to classify the eight types of arrhythmias including normal sinus rhythm. The standard 12-lead ECG dataset was provided by Computing in Cardiology 2020 Physionet Challenge and consisted of 6,877 patients. The proposed algorithm showed excellent performance in the classification of persistent cardiac arrhythmias; however, its accuracy was somewhat low in the classification of episodic arrhythmias. If our proposed model is trained and verified using more clinical data, we believe it can be used as an auxiliary device for diagnosing cardiac arrhythmias.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Da Un Jeong ◽  
Ki Moo Lim

AbstractElectrocardiograms (ECGs) are widely used for diagnosing cardiac arrhythmia based on the deformation of signal shapes due to changes in various heart diseases. However, these abnormal signs may not be observed in some 12 ECG channels, depending on the location, the heart shape, and the type of cardiac arrhythmia. Therefore, it is necessary to closely and comprehensively observe ECG records acquired from 12 channel electrodes to diagnose cardiac arrhythmias accurately. In this study, we proposed a clustering algorithm that can classify persistent cardiac arrhythmia as well as episodic cardiac arrhythmias using the standard 12-lead ECG records and the 2D CNN model using the time–frequency feature maps to classify the eight types of arrhythmias and normal sinus rhythm. The standard 12-lead ECG records were provided by China Physiological Signal Challenge 2018 and consisted of 6877 patients. The proposed algorithm showed high performance in classifying persistent cardiac arrhythmias; however, its accuracy was somewhat low in classifying episodic arrhythmias. If our proposed model is trained and verified using more clinical data, we believe it can be used as an auxiliary device for diagnosing cardiac arrhythmias.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012058
Author(s):  
P. Giriprasad Gaddam ◽  
A Sanjeeva reddy ◽  
R.V. Sreehari

Abstract In the current article, an automatic classification of cardiac arrhythmias is presented using a transfer deep learning approach with the help of electrocardiography (ECG) signal analysis. Now a days, an ECG waveform serves as a powerful tool used for the analysis of cardiac arrhythmias (irregularities). The goal of the present work is to implement an algorithm based on deep learning for classification of different cardiac arrhythmias. Initially, the one dimensional (1-D) ECG signals are transformed to two dimensional (2-D) scalogram images with the help of Continuous Wavelet(CWT). Four different categories of ECG waveform were selected from four PhysioNet MIT-BIH databases, namely arrhythmia database, Normal Sinus Rhythm database, Malignant Ventricular Ectopy database and BIDMC Congestive heart failure database to examine the proposed technique. The major interest of the present study is to develop a transferred deep learning algorithm for automatic categorization of the mentioned four different heart diseases. Final results proved that the 2-D scalogram images trained with a deep convolutional neural network CNN with transfer learning technique (AlexNet) pepped up with a prominent accuracy of 95.67%. Hence, it is worthwhile to say the above stated algorithm demonstrates as an effective automated heart disease detection tool


Author(s):  
Sumathi S ◽  
Agalya V

: A progressive and flourishing technological advancement occurs across the communities working on a domain that needs clinical training and Technology Transfer. There is an essentiality for the evolution of advanced concepts in the Classification of healthcare, particularly in relation to arrhythmia detection towards clinical operations. Being the forerunner among the emerging areas in science and technology, this field demands an extensive practical and verification research. These innovative technological progress has significantly contributed to high-quality, on-time, acceptable and affordable healthcare. This paper approaches a novel method of Detecting and classifying the cardiac arrhythmias using deep learning model for classification of electrocardiogram (ECG) signals. This method is based on using Cubic Wavelet Transform for analyzing the ECG signals and extracting the parameters related to dangerous cardiac arrhythmias. In these parameters ar used as input to these classifier, five most important types of ECG signals they are Normal Sinus Rhythm (NSR), Atrial Fibrillation (AF), Pre-Ventricular Contraction (PVC), Ventricular Fibrillation (VF), and Ventricular Flutter (VFLU). By using the deep learning algorithm to recognition and classification capabilities across a broad area of biomedical engineering. The performance of the deep learning model was evaluated in terms of training performance and classification accuracies. The classification accuracy of 99.24% is achieved. . Good accuracy of ECG patterns is achievable only over a large number of files.These difficulties have necessitated us to develop a new detection scheme, which gives a high level of accuracy, low false-positive and low false-negative statistics.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hua Zhang ◽  
Chengyu Liu ◽  
Zhimin Zhang ◽  
Yujie Xing ◽  
Xinwen Liu ◽  
...  

The present study addresses the cardiac arrhythmia (CA) classification problem using the deep learning (DL)-based method for electrocardiography (ECG) data analysis. Recently, various DL techniques have been utilized to classify arrhythmias, with one typical approach to developing a one-dimensional (1D) convolutional neural network (CNN) model to handle the ECG signals in the time domain. Although the CA classification in the time domain is very prevalent, current methods’ performances are still not robust or satisfactory. This study aims to develop a solution for CA classification in two dimensions by introducing the recurrence plot (RP) combined with an Inception-ResNet-v2 network. The proposed method for nine types of CA classification was tested on the 1st China Physiological Signal Challenge 2018 dataset. During implementation, the optimal leads (lead II and lead aVR) were selected, and then 1D ECG segments were transformed into 2D texture images by the RP approach. These RP-based images as input signals were passed into the Inception-ResNet-v2 for CA classification. In the CPSC, Georgia, and the PTB_XL ECG databases of the PhysioNet/Computing in Cardiology Challenge 2020, the RP-based method achieved an average F1-score of 0.8521, 0.8529, and 0.8862, respectively. The results suggested the excellent generalization ability of the proposed method. To further assess the performance of the proposed method, we compared the 2D RP-image-based solution with the published 1D ECG-based works on the same dataset. Also, it was compared with two traditional ECG transform into 2D image methods, including the time waveform of the ECG recordings and time-frequency images based on continuous wavelet transform (CWT). The proposed method achieved the highest average F1-score of 0.844, with only two leads of the 12-lead ECG original data, which outperformed other works. Therefore, the promising results indicate that the 2D RP-based method has a high clinical potential for CA classification using fewer lead ECG signals.


Author(s):  
Chetan M. Jadhav ◽  
V. K. Bairagi

<p>The term Arrhythmia refers to any change from the normal sequence in the electrical impulses. It is also treated as abnormal heart rhythms or irregular heartbeats. The rate of growth of Cardiac Arrhythmia disease is very high &amp; its effects can be observed in any age group in society. Arrhythmia detection can be done in many ways but effective &amp; simple method for detection &amp; diagnosis of  Cardiac Arrhythmia is by doing analysis of Electrocardiogram signals from ECG sensors. ECG signal can give us the detail information of heart activities, so we can use ECG signals to detect the rhythm &amp; behaviour of heart beats resulting into detection &amp; diagnosis of Cardiac Arrhythmia. In this paper new &amp; improved methodology for early Detection &amp; Classification of Cardiac Arrhythmia has been proposed. In this paper ECG signals are captured using ECG sensors &amp; this ECG signals are used &amp; processed to get the required data regarding heart beats of the human being &amp; then proposed methodology applies for Detection &amp; Classification of Cardiac Arrhythmia. Detection of Cardiac Arrhythmia using ECG signals allows us for easy &amp; reliable way with low cost solution to diagnose Arrhythmia in its prior early stage.</p>


Author(s):  
Khudhur A. Alfarhan ◽  
Mohd Yusoff Mashor ◽  
Abdul Rahman Mohd Saad ◽  
Mohammad Iqbal Omar

Heart monitoring kits are only available for bedridden patients and the traditional heart monitoring kits have many wires that are obstacle patients’ mobility. Most of the existing heart monitoring kits can not detect heart diseases. Thus, the current study proposed a wireless heart monitoring kit to monitor patients with a heart abnormality. The proposed kit can detect and classify four arrhythmia types as well as normal ECG with high accuracy. The design and development of the wireless heart abnormality monitoring kit (WHAMK) in this research were divided into three stages. These stages are the development of an arrhythmias detection and classification method using artificial intelligence approach, design and implementation of the kit hardware, and design and coding of the kit software. Arrhythmias classification approach is divided into four stages, namely obtaining the electrocardiograph (ECG) signals, preprocessing, features extraction and classification. The features extraction method are based on statistical features. The library support vector machine (LIBSVM) was used to classify the ECG signals. The hardware of the kit is divided into two parts, namely ECG body sensor (EBS), and processing and displaying unit (PDU). EBS working on acquiring the ECG signal from patient's body. PDU working on processing the collected ECG signal, plotting it and detecting the arrhythmias. Arrhythmias classification approach was developed by using statistical features and LIBSVM. They were implemented in the software of the kit to enable it to detect the arrhythmias in the real-time and fully automatically. The kit can detect and classify four arrhythmia types as well as normal sinus rhythm (NSR). These types of arrhythmia are premature atrial contraction (PAC), premature ventricles contraction (PVC), Bradycardia and Tachycardia. The proposed kit gave a good accuracy for detecting and classifying Arrhythmia with the overall accuracy of 96.2%.


2019 ◽  
Vol 8 (4) ◽  
pp. 2492-2494

Recently, the obvious increasing number of cardiovascular disease, the automatic classification research of Electrocardiogram signals (ECG) has been playing a important part in the clinical diagnosis of cardiovascular disease. Convolution neural network (CNN) based method is proposed to classify ECG signals. The proposed CNN model consists of five layers in addition to the input layer and the output layer, i.e., two convolution layers, two down sampling layers and one full connection layer, extracting the effective features from the original data and classifying the features using wavelet .The classification of ARR (Arrhythmia), CHF (Congestive Heart Failure), and NSR (Normal Sinus Rhythm) signals. The experimental results contains on ARR signals from the MIT-BIH arrhythmia,CHF signals from the BIDMC Congestive Heart Failure and NSR signals from the MIT-BIH Normal Sinus Rhythm Databases show that the proposed method achieves a promising classification accuracy of 90.63%, significantly outperforming several typical ECG classification methods.


Sign in / Sign up

Export Citation Format

Share Document