scholarly journals Biomolecular Interaction, Antibacterial and Anticancer Activities of Organometallic Re(I) Complexes with 5-(2-butyl-5-chloro-1H-imidazol-4-yl)-1,3-diaryl-4,5-dihydro-1H-pyrazole

Author(s):  
Reena R. Varma ◽  
Juhee G. Pandya ◽  
Foram U. Vaidya ◽  
Chandramani Pathak ◽  
Milan P. Dhaduk ◽  
...  

Abstract Organometallic rhenium(I) complexes (I-VI) using substituted 5-(2-butyl-5-chloro-1H-imidazol-4-yl)-1,3-diaryl-4,5-dihydro-1H-pyrazole have been synthesized and characterised by spectroscopic method. For evaluation of HOMO-LUMO energy gap, estimation of bond angle, bond length data and Mulliken charge analysis DFT studies were performed. The complexes (I-VI) can be generated by bis-heterocyclic ligand followed by metal chelation. The interactions between synthesised compounds and double stranded DNA (HS DNA) was carried out by viscosity measurements, absorption titration, and gel electrophoresis gives information about modes of binding and the nucleolytic efficiency of compounds. Groove binding was suggested as the most possible mode and the DNA-binding (Kb) constants of the complexes were calculated. Electronic spectra and conductivity measurement confirm the different transition, and non-electrolytic nature of the metal complexes. Thermodynamic parameter ΔG0 value ranging from -7227.0 to -9463.0 J/moleoK. According to the thermodynamic parameter, the main binding force could be judged. In vivo and In vitro cytotoxicity against the eukaryotic and prokaryotic cells gives toxic nature of the synthesised compounds. An antimicrobial study was carried out by estimating MIC (Minimum Inhibitory Concentration) against two Gram-positive and three Gram-negative bacteria. All compounds found effective against S. cerevisiae which is confirmed by enhancing ROS production and DNA damage show by gel electrophoresis as compared to untreated yeast cell culture and DMSO.

2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 498
Author(s):  
Mariaevelina Alfieri ◽  
Antonietta Leone ◽  
Alfredo Ambrosone

Plants produce different types of nano and micro-sized vesicles. Observed for the first time in the 60s, plant nano and microvesicles (PDVs) and their biological role have been inexplicably under investigated for a long time. Proteomic and metabolomic approaches revealed that PDVs carry numerous proteins with antifungal and antimicrobial activity, as well as bioactive metabolites with high pharmaceutical interest. PDVs have also been shown to be also involved in the intercellular transfer of small non-coding RNAs such as microRNAs, suggesting fascinating mechanisms of long-distance gene regulation and horizontal transfer of regulatory RNAs and inter-kingdom communications. High loading capacity, intrinsic biological activities, biocompatibility, and easy permeabilization in cell compartments make plant-derived vesicles excellent natural or bioengineered nanotools for biomedical applications. Growing evidence indicates that PDVs may exert anti-inflammatory, anti-oxidant, and anticancer activities in different in vitro and in vivo models. In addition, clinical trials are currently in progress to test the effectiveness of plant EVs in reducing insulin resistance and in preventing side effects of chemotherapy treatments. In this review, we concisely introduce PDVs, discuss shortly their most important biological and physiological roles in plants and provide clues on the use and the bioengineering of plant nano and microvesicles to develop innovative therapeutic tools in nanomedicine, able to encompass the current drawbacks in the delivery systems in nutraceutical and pharmaceutical technology. Finally, we predict that the advent of intense research efforts on PDVs may disclose new frontiers in plant biotechnology applied to nanomedicine.


Author(s):  
Changhong Li ◽  
Kui Zhang ◽  
Guangzhao Pan ◽  
Haoyan Ji ◽  
Chongyang Li ◽  
...  

Abstract Background Dehydrodiisoeugenol (DEH), a novel lignan component extracted from nutmeg, which is the seed of Myristica fragrans Houtt, displays noticeable anti-inflammatory and anti-allergic effects in digestive system diseases. However, the mechanism of its anticancer activity in gastrointestinal cancer remains to be investigated. Methods In this study, the anticancer effect of DEH on human colorectal cancer and its underlying mechanism were evaluated. Assays including MTT, EdU, Plate clone formation, Soft agar, Flow cytometry, Electron microscopy, Immunofluorescence and Western blotting were used in vitro. The CDX and PDX tumor xenograft models were used in vivo. Results Our findings indicated that treatment with DEH arrested the cell cycle of colorectal cancer cells at the G1/S phase, leading to significant inhibition in cell growth. Moreover, DEH induced strong cellular autophagy, which could be inhibited through autophagic inhibitors, with a rction in the DEH-induced inhibition of cell growth in colorectal cancer cells. Further analysis indicated that DEH also induced endoplasmic reticulum (ER) stress and subsequently stimulated autophagy through the activation of PERK/eIF2α and IRE1α/XBP-1 s/CHOP pathways. Knockdown of PERK or IRE1α significantly decreased DEH-induced autophagy and retrieved cell viability in cells treated with DEH. Furthermore, DEH also exhibited significant anticancer activities in the CDX- and PDX-models. Conclusions Collectively, our studies strongly suggest that DEH might be a potential anticancer agent against colorectal cancer by activating ER stress-induced inhibition of autophagy.


1984 ◽  
Vol 101 (1) ◽  
pp. 27-32 ◽  
Author(s):  
F. Mena ◽  
G. Martínez-Escalera ◽  
C. Clapp ◽  
C. E. Grosvenor

ABSTRACT Adenohypophysial prolactin of lactating rats was pulse-labelled by [3H]leucine injected i.v. at the time of removal of the pups. The [3H]prolactin concentration in the pituitary gland, analysed by polyacrylamide-gel electrophoresis, progressively fell as the time from labelling to removal of the pituitary gland increased from 8 to 24 h, which suggests that there was a loss of hormone as it aged within the gland. Suckling effectively provoked the depletion–transformation of total and [3H]prolactin (extracted at pH 7·2) when applied after 8 h but not when applied after either 16 or 24 h after removing the pups. In rats whose pups were removed for 8 h, suckling also depleted–transformed [3H]prolactin labelled 4 h, but not that labelled 1 h before suckling. The pituitary glands of other lactating rats were labelled with [3H]leucine injected i.v. at various times before removing the glands and incubating them in medium 199. The secretion into the medium of [3H]prolactin labelled either 4, 8, 16 or 24 h beforehand was maximal during the first 30 min then declined from 30 to 240 min of incubation. However, secretion of prolactin labelled 1 h and 10 min beforehand reached a maximum after 0·5–1 h and 2 h of incubation respectively, then remained constant during the remainder of the 4-h incubation period. The total 4-h secretion of [3H]prolactin was greatest (65% of preincubation concentration) from those glands labelled 4 h before in contrast to those labelled 10 min (15%) or 1 (38%), 8 (34%), 16 (18%) or 24 h (26%) before incubation. Taken together, these data suggest that prolactin synthesized 4 h earlier is more likely to be released in response to physiological stimuli than is more recently formed prolactin or prolactin which has remained in the pituitary gland for 16 h or longer. J. Endocr. (1984) 101, 27–32


Author(s):  
JAINEY P. JAMES ◽  
AISWARYA T. C. ◽  
SNEH PRIYA ◽  
DIVYA JYOTHI ◽  
SHESHAGIRI R. DIXIT

Objective: The significant drawbacks of chemotherapy are that it destroys healthy cells, resulting in adverse effects. Hence, there is a need to adopt new techniques to develop cancer-specific chemicals that target the molecular pathways in a non-toxic fashion. This study aims to screen pyrazole-condensed heterocyclics for their anticancer activities and analyse their enzyme inhibitory potentials EGFR, ALK, VEGFR and TNKS receptors. Methods: The structures of the compounds were confirmed by IR, NMR and Mass spectral studies. The in silico techniques applied in this study were molecular docking and pharmacophore modeling to analyse the protein-ligand interactions, as they have a significant role in drug discovery. Drug-likeness properties were assessed by the Lipinski rule of five and ADMET properties. Anticancer activity was performed by in vitro MTT assay on lung cancer cell lines. Results: The results confirm that all the synthesised pyrazole derivatives interacted well with the selected targets showing docking scores above-5 kcal/mol. Pyrazole 2e interacted well with all the four lung cancer targets with its stable binding mode and was found to be potent as per the in vitro reports, followed by compounds 3d and 2d. Pharmacophore modeling exposed the responsible features responsible for the anticancer action. ADMET properties reported that all the compounds were found to have properties within the standard limit. The activity spectra of the pyrazoles predicted that pyrazolopyridines (2a-2e) are more effective against specific receptors such as EGFR, ALK and Tankyrase. Conclusion: Thus, this study suggests that the synthesised pyrazole derivatives can be further investigated to validate their enzyme inhibitory potentials by in vivo studies.


2019 ◽  
Vol 15 (11) ◽  
pp. 2151-2163 ◽  
Author(s):  
Lei Fang ◽  
Huaying Fan ◽  
Chunjing Guo ◽  
Linhan Cui ◽  
Peng Zhang ◽  
...  

Polymeric nanoparticles were widely used as delivery vehicles for targeted delivery of anticancer drugs, because of their targeting property and versatility. Mitochondria are one of the important organelles that regulate the apoptosis of cancer cells and can be considered as a pivotal target for cancer treatment. A pH-responsive charge-reversal and mitochondrial targeting nanoparticles, Vitamin B6-oligomeric hyaluronic acid-dithiodipropionic acid-berberine (B6-oHA-SS-Ber), were prepared in this study. Ber is a lipophilic cation that was conjugated with oHA through disulfide bonds to produce mitochondria-targeted conjugates (oHA-SS-Ber). B6 was conjugated to oHA to obtain B6-oHA-SS-Ber and the two types of Cur-loaded nanoparticles (Cur-NPs) were formulated by the dialysis method. Due to pKa of B6, the charge they carried in the tumor tissue acidic microenvironment can be transferred from negative charge to positive charge, further targeting mitochondria. In our study, we successfully synthesized B6-HA-SS-Ber and characterized the structure by 1H-NMR. According to the results of transmission electron microscopy (TEM), we found that the B6-oHA-SS-Ber/Cur micelles could self-assembled in water to form spherical nanoparticles, with a hydrodynamic diameter of 172.9±13 nm. Moreover, in vitro cytotoxicity, cellular uptake, lysosome escape and mitochondrial distribution researches revealed the better effect of B6-oHA-SS-Ber/Cur micelles in comparison to oHA-SS-Ber/Cur. In vivo anticancer activities indicated that the B6-oHA-SS-Ber/Cur micelles exhibited effective inhibition of tumor growth.


2020 ◽  
Vol 52 (4) ◽  
pp. 401-410
Author(s):  
Mengyu Xi ◽  
Wan He ◽  
Bo Li ◽  
Jinfeng Zhou ◽  
Zhijian Xu ◽  
...  

Abstract Diffuse large B-cell lymphoma (DLBCL) is the most common category and disease entity of non-Hodgkin lymphoma. Osalmide and pterostilbene are natural products with anticancer activities via different mechanism. In this study, using a new synthetic strategy for the two natural products, we obtained the compound DCZ0801, which was previously found to have anti-multiple myeloma activity. We performed both in vitro and in vivo assays to investigate its bioactivity and explore its underlying mechanism against DLBCL cells. The results showed that DCZ0801 treatment gave rise to a dose- and time-dependent inhibition of cell viability as determined by CCK-8 assay and flow cytometry assay. Western blot analysis results showed that the expression of caspase-3, caspase-8, caspase-9 and Bax was increased, while BCL-2 and BCL-XL levels were decreased, which suggested that DCZ0801 inhibited cell proliferation and promoted intrinsic apoptosis. In addition, DCZ0801 induced G0/G1 phase arrest by downregulating the protein expression levels of CDK4, CDK6 and cyclin D1. Furthermore, DCZ0801 exerted an anti-tumor effect by down-regulating the expressions of p-PI3K and p-AKT. There also existed a trend that the expression of p-JNK and p-P38 was restrained. Intraperitoneal injection of DCZ0801 suppressed tumor development in xenograft mouse models. The preliminary metabolic study showed that DCZ0801 displayed a rapid metabolism within 30 min. These results demonstrated that DCZ0801 may be a new potential anti-DLBCL agent in DLBCL therapy.


1977 ◽  
Author(s):  
Christine N. Vogel ◽  
Kingdon S. Henry ◽  
Roger L. Lundblad

Our intention is to study the interaction of rabbit thrombin with antithrombin III (AT-III) in vitro and in vivo. After activation of crude prothrombin with tissue thromboplastin and CaCl2, thrombin was purified and showed two species of thrombin with molecular weights of 36,000 and 39,000 daltons as determined by sodium dodecyl sulfate discontinuous gel electrophoresis. Rabbit AT-III was purified using a heparin agarose column and had a molecular weight of 55,000 daltons. The inhibition of thrombin by AT-III was followed by fibrinogen clotting assays and an AT-III-thrombin complex was observed on gel electrophoresis. For the in vivo studies both thrombin and AT-III were radiolabelled with Na125i using the solid state lactoperoxidase method and retained 99% of the pre-iodinated specific activity. Radiolabelled thrombin and a radiolabelled AT-III-thrombin complex were injected into different rabbits. The rate of removal of both was very similar with a half-life of approximately 9 hours. When radiolabelled AT-III was injected, the half-life was approximately 60 hours. Since the disappearance rate of thrombin more closely approximates that of the preformed AT-III-thrombin complex and is clearly shorter than the turnover rate of AT-III, the possibility is raised that thrombin combines in vivo with a native inhibitor such as AT-III and may in fact be removed from the circulation as a complex rather than as a native molecule.


Sign in / Sign up

Export Citation Format

Share Document