scholarly journals Sinusoidal Pulse Width Modulation for a PhotoVoltaic Based Single Stage Inverter

Author(s):  
Bolisetti Kavya Santhoshi ◽  
Kuppusamy Mohanasundaram ◽  
Vishnu Kumar Kaliappan ◽  
Ravishankar Sathyamurthy

Abstract The work proposed in this paper focuses on providing an effective solution to shortage of power in rural areas with an effective technique implemented in an economically feasible way. The traditional Inverters used for either residential or commercial purposes consume electrical energy from the grid to fulfill the charging and discharging of the battery, which may lead to overloading. The shortcomings of the traditional inverters such as Non-Renewable nature of power sources, increased cost of manufacturing, and multi-stage conversion complexity, are considered by the researchers for improvement. As a result, an attempt has been made to provide a cost effective renewable energy system with single stage topology for AC power applications. Single stage power conversion with allowed shoot through state is used here to avoid additional components and reduce the switching losses. Unlike the traditional inverters, the Quasi Impedance Source Inverter that is brought forward can be utilized as a Standalone system or a capable backup at the time of power outages. Sinusoidal pulse width modulation (SPWM) is applied to attain reduced harmonics which are measured by observing the harmonic pattern in Total Harmonic Distortion (THD) curve. The lab results obtained through MATLAB simulation confirm the noteworthy diminution of THD level in the proposed system compared to the reported one. Usage of Photovoltaic (PV) Panel to tap energy with reduced stochastic fluctuations due to high filtering capacity of the proposed circuit, eliminating the need of additional filters, is the uniqueness of this technique.

Teknik ◽  
2020 ◽  
Vol 41 (1) ◽  
pp. 55-61
Author(s):  
Abdul Syakur ◽  
Arifin Wibisono

The application of high voltage becomes more important and wider. High voltage is needed in the process of reducing air contaminants, waste treatment, sanitation, disinfecting microorganisms, testing for insulating high voltage equipment, and transmitting electrical energy. The problem of high voltage AC generation system is still in a large scale, static, not portable, and very expensive. This paper presents an analytical design of a high-voltage AC high-frequency based on power electronic. It is portable, less expensive, and eaasier to control the amplitudo and frequency. The application of the Full Bridge Bipolar Inverter topology with the Sinusoidal Pulse Width Modulation switching method provides variable sinusoidal AC voltage outputs (Vo) on its amplitude and frequency. The Tesla Coil Transformer amplifies the amplitude in accordance with the classification of the high voltage AC in the order of Kilo Volt. The Closed Loop control system in the Bipolar Inverter Full Bridge topology provides high accuracy results between the given setting values and the actual amplitude output and the expected high-frequency AC voltage. Analysis of the SPWM switching pattern parameter settings shows stability for several loading variations


Author(s):  
N. Murali ◽  
V. Balaji

<span>This paper presents the performance enhancement of capacitor run induction motor by pulse width modulated AC chopper.The phase angle control faces severe shortfall in the performance improvement for larger triggering angles. In this paper the comparison of phase angle control and sinusoidal pulse width modulation technique is encountered for effective speed control of single phase capacitor run induction motor. The necessary parameters are taken into considerations are higher efficiency, lesser total harmonic distortion and high input power factor. The results are compared by using the simulations using matlab Simulink environment. The validation of result in hardware is implemented using Field programmable gate array for sinusoidal pulse width modulation technique.</span>


Author(s):  
N. Murali ◽  
V. Balaji

<span>This paper presents the performance enhancement of capacitor run induction motor by pulse width modulated AC chopper.The phase angle control faces severe shortfall in the performance improvement for larger triggering angles. In this paper the comparison of phase angle control and sinusoidal pulse width modulation technique is encountered for effective speed control of single phase capacitor run induction motor. The necessary parameters are taken into considerations are higher efficiency, lesser total harmonic distortion and high input power factor. The results are compared by using the simulations using matlab Simulink environment. The validation of result in hardware is implemented using Field programmable gate array for sinusoidal pulse width modulation technique.</span>


Author(s):  
Bolisetti Kavya Santhoshi ◽  
Kuppusamy Mohanasundaram ◽  
Vishnu Kumar Kaliappan ◽  
Ravishankar Sathyamurthy

Author(s):  
S. Usha ◽  
C. Subramani ◽  
A. Geetha

This paper deals with the design of cascaded 11 level H- bridge inverter. It includes a comparison between the 11 level H-bridge and T-bridge multilevel inverter. The cascaded inverter of higher level is a very effective and practical solution for reduction of total harmonic distortion (THD).These cascaded multilevel inverter can be used for higher voltage applications with more stability. As the level is increased the output waveform becomes more sinusoidal in nature. The inverter is designed using multicarrier sinusoidal pulse width modulation technique for generating triggering pulses for the semiconductor switches used in the device. Through this paper it will be proved that a cascaded multilevel H-bridge topology has higher efficiency than a T-bridge inverter, as whichever source input voltage is provided since input is equal to the output voltage. In T-bridge inverter, the output obtained is half of the applied input, so efficiency is just half as compared to H-bridge. The output waveform is distorted and has higher THD.  The simulation is performed using MATLAB /Simulink 2013 software.


2021 ◽  
Vol 9 (04) ◽  
pp. 34-43
Author(s):  
K. Fernand Koffi ◽  
◽  
Agoua Raoule ◽  
Diety Landry ◽  
Georges Loum ◽  
...  

The need to use SPWM controlled voltage inverters in MV, led us to examine how to filter alternative signals with filters (L-C) and (RL-C). This allowed us to decide on the use of certain formulas for calculating the elements of these filters. Likewise, we have proposed a method of calculating the resistance R by mathematical iterations without using the quality factor Q, in order to obtain a low error rate between the RMS values and the fundamental effective values and THDs respecting the standard 519 IEEE - 2014. The results of these studies obtained using the MATLAB-SIMULINK software are presented in the penultimate session of this article. Nomenclature SPWM Sinusoidal Pulse-Width-Modulation THD Total Harmonic distortion SN Apparent power of the alternating load MV Medium voltage alternating voltage (1 kV --- 50 kV) Uph phase-to-phase voltage at the ac load RMS Root Mean Squared R L C Resistance Inductance Capacitor MVDC Medium voltage direct current VSI Voltage Source Inverter


2018 ◽  
Vol 7 (3.1) ◽  
pp. 42
Author(s):  
B Kandavel ◽  
G Uvaraj ◽  
M Manikandan

This paper presents comparative study of Total Harmonic Distortion (THD) and its individual harmonic contents without grid and with grid for Diode clamped multi level inverter (DCMLI) and Flying capacitor clamped multilevel inverter (FCMLI) based Doubly Fed Induction Generator (DFIG) employing PI and Fuzzy logic controller (FLC). Simple method to control for a variable speed wind energy conversion system with a DFIG is connected to the grid through a diode rectifier and a diode clamped multilevel inverter (DCMLI). The DC-link voltage is controlled through a DC-DC boost converter to keep the DC voltage at constant value. Inverter is controlled by sinusoidal pulse width modulation technique, which supplies power to the grid. The THD and its harmonic content are studied for different wind speeds. DFIG fed flying capacitor multi level inverter (FCMLI) based WECS connected to load as well as grid. FCMLI is controlled through sinusoidal pulse width modulation. Voltage and current harmonics are studied. The results of both multilevel inverters are compared. It shows that the level of harmonic content of two types of multilevel inverters working at different wind speeds indicates that Total Harmonic Distortion (THD) for DCMLI has given best results.  


Author(s):  
Taha A. Hussein ◽  
Laith A. Mohammed

Space vector pulse width modulation (SVPWM) generates less harmonic distortion in the output voltage or currents, provides more efficient use of supply voltage and better voltage utilization compared with sine pulse width modulation (PWM). In this work, a detailed Simulink implementation for SVPWM for the open loop control of permanent magnet synchronous motor (PMSM) is presented. Results show the output of the blocks that assembles SVPWM besides the PMSM voltages and currents when exposing the motor to different load torques. The technique of SVPWM enables the load to respond to the change in external load torque. This technique also results in lower total harmonic distortion and better utilization of the direct current (DC) supply compared with traditional sinusoidal pulse width modulation sinusoidal pulse width modulation (SPWM).


2019 ◽  
Vol 25 (1) ◽  
Author(s):  
JOEL OSARUMWENSE EGWAILE ◽  
MATTHEW ORIAHI

<p>Thyristors are now widely used in many power electronics and motor driven applications and all the known methods of control are nothing but variations of either the phase angle firing control (PFC) or the pulse width modulation control (PWM). Each of these methods has its own benefits and disadvantages, but the pulse width modulation control method is, perhaps, by far, the most effective and costly method. Since PWM differs from phase firing control (PFC) in that the control action of PWM takes place only during the time of the firing pulse, this research seeks to develop a combination firing package that maximizes the benefits of the two methods. At first a thyristor is configured as a PNP-type power transistor latch with two ordinary NPN bipolar switching transistors. The power transistor is switched on by zero crossover firing and then switched off by phase angle delay firing. The performance of the model was evaluated and the dynamic characteristics of the motor, such as speed, current, voltage and the total harmonic distortion were carried via simulation. The results shows that by using the Modified PWM firing technique the speed of an m-phase induction motor can be controlled more effectively and reliably. The circuit is easy to implement and cost effective and may be patented and made available for commercial use.</p>


Author(s):  
R. Palanisamy ◽  
Gaurav Singh ◽  
Priyanka Das ◽  
D. Selvabharathi ◽  
Sourav Sinha ◽  
...  

This work recommends the performance of coupled inductor based novel 11-level inverter with reduced number of switches. The inverter which engender the sinusoidal output voltage by the use of split inductor with minimised total harmonic distortion (THD). The voltage stress on each controlled switching devices, capacitor balancing and switching losses can be reduced. The proposed system which gives better controlled output current and improved output voltage with moderate THD value. The switching devices of the system are controlled by using multicarrier sinusoidal pulse width modulation algorithm by comparing the carrier signals with sinusoidal signal. The simulation and experimental results of the proposed 11-level inverter system outputs are established using matlab/Simulink and dsPIC microcontroller respectively.<br /><br />


Sign in / Sign up

Export Citation Format

Share Document