Removal of Murexide Dye from Aqueous Solution Using A Novel Schiff Base Tin(IV) Compound

Author(s):  
SEDA KARAYÜNLÜ BOZBAS ◽  
Begüm Canan Yıldız Aras ◽  
Muhammed Karabulut ◽  
Asgar Kayan

Abstract A Schiff base tin (IV) compound was synthesized by reactions between 2-((E)-(p-tolylimino)methyl)phenol (TIMPH) and butyltin trichloride in 2:1 mole ratio in ethanol at room temperature. [SnBuCl3(TIMPH)2] was characterized by FT-IR, 1H-NMR, 13C-NMR spectroscopy, elemental analysis, and mass spectrometry. Optimization of Murexide dye from aqueous solution was performed by examining; effect of contact time, initial pH, adsorbent amount, initial dye concentration and temperature on the tin adsorbent. The highest adsorption recovery value of was 98.00% and the adsorption capacity was 248.8 mg/g at the end of 20 minutes at 100 mg/L dye concentration while the temperature was 25°C and the pH was 3. Langmuir, Freundlich, and Temkin adsorption isotherms were calculated at 25 ºC. The highest R2 value was found 0.099 for the Langmuir isotherm model. The adsorption characteristics of murexide dye showed that adsorption kinetic obeyed the pseudo-second-order kinetics, and the thermodynamic data suggested the spontaneous and exothermic process.

Author(s):  
Haresh G. Kathrotiya ◽  
Sagar P. Gami ◽  
Yogesh T. Naliapara

A simple and efficient approach for the synthesis of thiophenyl thiazole based triazolo [4,3-a] quinoxaline derivatives is described. In this methodology, 3-hydrazinyl-N-(4-(thiophen-2-yl) thiazol-2-yl) quinoxalin-2-amine derivatives treated with various aromatic aldehyde to form Schiff base which on treatment with iodobenzene diacetate in dichloromethane at room temperature to furnish title compounds. The synthesized compounds were characterized by 1H NMR, 13C NMR, FT-IR, elemental analysis, and mass spectral data


Author(s):  
Bo Wang ◽  
Jie Yu ◽  
Hui Liao ◽  
Wenkun Zhu ◽  
Pingping Ding ◽  
...  

A novel natural honey hydrothermal biochar (HHTB) was prepared using natural honey as raw material. The as-prepared adsorbent was applied to adsorb Pb2+ from aqueous solution and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy to investigate the structure and morphology change of the adsorbent before and after Pb2+ adsorption. The influence of the pH, initial Pb2+ concentration, temperature, and contact time on the adsorption of Pb2+ was systematically investigated. The results revealed that the adsorption capacity for Pb2+ is up to 133.2 mg·g−1 at initial pH of 5.0 and adsorption temperature of 298 K. Meanwhile, the adsorption of Pb2+ on HHTB can be well fitted by the pseudo-second-order model and Langmuir isotherm model. The adsorbent had great selectivity for Pb2+ from the aqueous solution containing coexisting ions including Cd2+, Co2+, Cr3+, Cu2+, Ni2+ and Zn2+. Furthermore, the adsorption of Pb2+ on HHTB was attributed to complexation coordination, where it involved hydroxyl and carboxylic groups on HHTB in the process of adsorption of Pb2+.


2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
F. Taktak ◽  
I. Bulduk

An efficient one-pot microwave-assisted hydrogenation of codeine was achieved in aqueous solution. This technique is simple, fast, environmentally friendly, and highly efficient. Structure of produced dihydrocodeine was approved by using FT-IR, 1H NMR, 13C NMR, EIMS, and elemental analysis technique. Its purity analysis was performed by using HPLC and assay analysis was performed by using potentiometric titration methods.


2020 ◽  
Vol 9 (3) ◽  
pp. 197-206
Author(s):  
Thaharah Ramadhani ◽  
Faisal Abdullah ◽  
Indra Indra ◽  
Abrar Muslim ◽  
Suhendrayatna Suhendrayatna ◽  
...  

The use of a low-cost biosorbent prepared from Ipomoea pes-caprae stem for the adsorption of Cd(II) ions from aqueous solution at different contact times, biosorbent sizes, pH values, and initial Cd(II) ions concentration solution was investigated. The biosorbent was analyzed using Fourier-transform infrared spectroscopy (FT-IR) to find important IR-active functional groups. A scanning electron microscope (SEM) was used to examine the biosorbent morphology. The experimental results showed the highest Cd(II) ions adsorption was 29.513 mg/g  under an optimal condition as initial Cd(II) ions concentration of 662.77 mg/L, 1 g dose, 80-min contact time, pH 5, 75 rpm of stirring speed, 1 atm, and 30 oC. Cd(II) ions' adsorption kinetics obeys the linearized pseudo-second-order kinetics (R2 = 0.996), and the adsorption capacity is based on the optimal condition, and the rate attained was 44.444 mg/g and 0.097 g/mg. Min, respectively. Besides, the adsorption isotherms were very well fitted by the linearized Langmuir isotherm model, and the monolayer adsorption capacity and pore volume determined was 30.121 mg/g and 0.129 L/mg, respectively. These results indicated the chemisorption nature


2011 ◽  
Vol 148-149 ◽  
pp. 357-360
Author(s):  
Jin Bo Huang ◽  
Min Cong Zhu ◽  
Zhi Fang Zhou ◽  
Hong Xia Zhang

Expanded graphite (EG) was prepared by microwave irradiation and evaluated as adsorbent for the removal of disperse blue 2BLN (DB) from aqueous solution by the batch adsorption technique under different conditions of initial pH value, adsorbent dosage, initial dye concentration and contact time. The experimental data were analyzed considering pseudo-first-order, pseudo-second-order and intra-particle diffusion approaches. The adsorption kinetics at room temperature could be expressed by the pseudo second order model very well. The results indicate that the adsorption rate is fast enough and more than eighty percent of the adsorbed DB can be removed in the first 15 min at room temperature, which makes the process practical for industrial application.


2016 ◽  
Vol 75 (5) ◽  
pp. 1051-1058 ◽  
Author(s):  
Qiujin Jia ◽  
Wanting Zhang ◽  
Dongping Li ◽  
Yulong Liu ◽  
Yuju Che ◽  
...  

Hydrazinolyzed cellulose-graft-polymethyl acrylate (Cell-g-PMA-HZ), an efficient adsorbent for removal of Cd(II) and Pb(II) from aqueous solution, has been prepared by ceric salt-initiated graft polymerization of methyl acrylate from microcrystalline cellulose surface and subsequent hydrazinolysis. The influences of initial pH, contact time, and temperature on adsorption capacity of Cell-g-PMA-HZ as well as adsorption equilibrium, kinetic and thermodynamic properties were examined in detail. As for Cd(II) adsorption, kinetic adsorption can be explained by pseudo-second-order, while adsorption isotherm fits well with Langmuir isotherm model, from which maximum equilibrium adsorption capacity can be derived as 235.85 mg g−1 at 28 °C. Further thermodynamic investigation indicated that adsorption of Cd(II) by adsorbent Cell-g-PMA-HZ is endothermic and spontaneous under studied conditions. On the other hand, isotherm of Pb(II) adsorption fits well with Freundlich isotherm model and is more likely to be a physical-adsorption-dominated process. Consecutive adsorption–desorption experiments showed that Cell-g-PMA-HZ is reusable with satisfactory adsorption capacity.


Author(s):  
Chunlian Hu ◽  
Wei Zhang ◽  
Yuantao Chen ◽  
Na Ye ◽  
DaWa YangJi ◽  
...  

Abstract Herein adsorption studies were proposed on a carboxylated sludge biochar (CSB) material modified by HNO3 to assess its capacity in the removal of cobalt from aqueous solution. The as-prepared sludge biochar material were characterized by Brunaure-Emmett-Teller (BET), Fourier transform infrared (FT-IR), Thermogravimetric analysis (TGA), Energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The isotherm process could be well described by Langmuir isotherm model. The adsorption kinetics indicated that cobalt adsorption followed pseudo-second-order kinetic model. The mechanism between Co(II) and biochar involved electrostatic interaction, ion exchange, surface complexation and physical function. The adsorption capacity on CSB was as high as 72.27 mg·g−1, surpassing original sludge biochar (SB). This is due to the fact that CSB had abundant oxygen-containing functional groups and many hydroxyls, as well as, the BET surface areas increased when SB was modified by HNO3, which stimulate adsorption effect. Therefore, this work shows that CSB could be used as an efficient adsorbent to remove Co(II) in the wastewater.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Ibrahim A. M. Saraireh ◽  
Mohammednoor Altarawneh ◽  
Jibril Alhawarin ◽  
Mahmoud Salman ◽  
Abdel Aziz Abu-Yamin ◽  
...  

Schiff base diethyl 4,4-(pentane-2,4-diylidenebis(azanylylidene))benzoate (1) as a new ligand (L) was prepared by the reaction of acetylacetone with benzocaine in the ratio of 1 : 1. Two transition-metal complexes, [Ni(II)(LCl(HOEt))] (2) and [Zn(II)(LCl(HOEt))] (3), have been synthesized from metal salts with didentate Schiff base ligand (L) and characterized by elemental analyses, FT-IR, 1H NMR, 13C NMR UV-Vis spectroscopy, and magnetic susceptibility. The biological activity of the complexes was studied. In addition, the M06-2x density function theory method and the 6-31G(d) basic set were applied to determine the optimized structures of 1–3 and to determine their IR and 1H NMR, 13C NMR spectra theoretically. The data are in good agreement with the experimental results. The geometries of complexes 2 and 3 were determined to be square-planar for 2 and tetrahedral for 3.


2014 ◽  
Vol 675-677 ◽  
pp. 647-653
Author(s):  
Hong Bin Lv ◽  
Yao Li ◽  
Wan You Zhang ◽  
Li Juan Xi

Mg-Fe hydrotalcite-like compounds (Mg-Fe-HTLCs) were synthesized via hydrothermal method, and characterized by XRD and FT-IR. The roasted products were used to remove sulfate ions by the adsorptive ability from aqueous solution. The effects of adsorbent dosage, initial pH and temperature on the sulfate ions removal were fully investigated, and the adsorption kinetics and adsorption isotherms were also studied. Results showed that the synthesized materials with CO32- as the interlayer anions had fine crystallinity. The materials of Mg-Fe hydrotalcite-like compounds had a very good adsorption capacity for aqueous solution with the initial sulfate ions concentration was 500mg/L, pH range from 4 to 8 and temperature of 35°C. Moreover, the adsorption equilibrium was about 90 min under the optical condition. The experimental data showed a good compliance with the pseudo-second-order kinetic model, and the adsorption isotherm data met Langmuir models well. It was found that the maximal adsorption capacity reached 151.51mg/g.


Author(s):  
Tomasz Kalak ◽  
Joanna Dudczak-Hałabuda ◽  
Yu Tachibana ◽  
Ryszard Cierpiszewski

Abstract In these studies, removal of Fe(III) ions by biosorption processes from aqueous solutions was carried out using paprika (Capsicum annuum L.) pomace generated during processing in the food industry. The biosorbent material was characterized using several analytical methods, including particle size distribution, XRD, SEM–EDS, electrokinetic zeta potential, surface area analysis (BET, BJH), thermogravimetry, morphology (SEM), spectrophotometry FT-IR. Several factors, such as biosorbent dosage, initial concentration, contact time and initial pH were analyzed to show an effect on the bioremoval process, efficiency and adsorption capacity. As a result, the maximum adsorption efficiency and capacity were determined to be 99.1% and 7.92 mg/g, respectively. Based on the kinetics analysis, the bioremoval process is better described by the Langmuir isotherm model and the pseudo-second order equation model. In conclusion, the achieved research results suggest that paprika biomass can be an effective material for efficiently removing iron(III) from wastewater and improving water quality. These studies on the recovery of iron metal from the environment fit in the latest trends in the concept of the global circular economy.


Sign in / Sign up

Export Citation Format

Share Document