scholarly journals Preparation and Application of Sewage Sludge Bio-char/zero Valent Iron (SSBC/ZVI) Composite for Improving the Biodegradability of a Real Chemical Synthesis-based Pharmaceutical Wastewater

Author(s):  
Gaoxiang Qi ◽  
Xiaobo Wang ◽  
Xuecheng Liu ◽  
Shen Yu

Abstract A new kind of micro-electrolysis filler sewage sludge biochar/zero violent iron (SSBC/ZVI) composite was prepared for a real chemical synthesis based pharmaceutical wastewater (CSPW) pretreatment for improving the biodegradation index (BI). The optimal operation condition of micro-electrolysis system was obtained at HRT of 2 h, the initial pH of 3.0 and filler dosage of 100 g/L, with COD removal rate of 30.5%. Comparative analysis of raw and used SSBC/ZVI filler, GC-MS analysis of raw and treated pharmaceutical wastewater suggested that the pollutants removal was mainly attributed to the combination of reduction and oxidation, absorption of SSBC and flocculation effect of iron sludge. In addition, SSBC/ZVI exhibited relative high stability and excellent reusability for COD removal and BI improvement of real pharmaceutical wastewater. The results of this study provide new ideas of sewage sludge utilization for real wastewater pretreatment.

2020 ◽  
Vol 13 (1) ◽  
pp. 126
Author(s):  
Guozhen Zhang ◽  
Xingxing Huang ◽  
Jinye Ma ◽  
Fuping Wu ◽  
Tianhong Zhou

Electrochemical oxidation technology is an effective technique to treat high-concentration wastewater, which can directly oxidize refractory pollutants into simple inorganic compounds such as H2O and CO2. In this work, two-dimensionally stable anodes, Ti/RuO2-IrO2-SnO2, have been developed in order to degrade organic pollutants from pharmaceutical wastewater. Characterization by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) showed that the oxide coating was successfully fabricated on the Ti plate surface. Electrocatalytic oxidation conditions of high concentration pharmaceutical wastewater was discussed and optimized, and the best results showed that the COD removal rate was 95.92% with the energy consumption was 58.09 kW·h/kgCOD under the electrode distance of 3 cm, current density of 8 mA/cm2, initial pH of 2, and air flow of 18 L/min.


2019 ◽  
Vol 38 (3) ◽  
pp. 243
Author(s):  
Happy Mulyani ◽  
Gregorius Prima Indra Budianto ◽  
Margono Margono ◽  
Mujtahid Kaavessina

Industrial wastewater treatment using Sequencing Batch Reactor (SBR) can improve effluent quality at lower cost than that obtained by other biological treatment methods. Further optimization is still required to enhance effluent quality until it meets standard quality and to reduce the operating cost of treatment of high strength organic wastewater. The purpose of this research was to determine the effect of pretreatment (pH adjustment and prechlorination) and aeration time on effluent quality and COD removal rate in tapioca wastewater treatment using SBR. Pretreatment was done by (1) adjustment of tapioca wastewater pH to control (4.92), 7, and 8, and (2) tapioca wastewater prechlorination at pH 8 during hour using calcium hypochlorite in variation dosages 0, 2, 4, 6 mg/L Cl2, SBR operation was conducted according to following steps: (1) Filling of pre-treated wastewater into a bioreactor during 1 hour, and (2) aeration of the mixture of tapioca wastewater and activated sludge during 8 hours. Effluent sample was collected at every 2-hours aeration for COD analysis. COD removal rate mathematical formula was got by first deriving the best fit function between aeration time and COD. Optimum aeration time resulting in no COD removal rate. The value of COD effluent and its removal rate in optimum aeration time was used to determine the recommended of operation condition of pretreatment. Research result shows that chosen pH operation condition is pH 8. Prechorination can make effluent quality which meets standard quality and highest COD removal rate. The chosen Cl2 dosage is 6 mg/L.


2011 ◽  
Vol 347-353 ◽  
pp. 1949-1952 ◽  
Author(s):  
Liang Li ◽  
Bing Zhe Xu ◽  
Chang Yu Lin ◽  
Xiao Min Hu

Zidovudine wastewater is difficult to biodegradation due to high COD and toxicity. The synergetic treatment of Zidovudine wastewater by Ultrasonic and iron-carbon micro-electrolysis technology was studied. The influence of initial pH, reaction time, mass ratio of iron and carbon and mass ratio of iron and water on degradation rate of COD was researched. The result showed that the COD removal rate was only about 54.3% and the degradation speed is very slow when iron-carbon micro-electrolysis treated Zidovudine wastewater separately. However, when ultrasonic synergy micro-electrolysis to treat Zidovudine wastewater, the COD removal rate could was up to 85% and the reaction time was also decreased. Moreover, the BOD5 / COD rose from 0.15 to 0.35, which meant the wastewater became easily biodegradable.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 206
Author(s):  
Yicheng Wang ◽  
Yingkun Wang ◽  
Xi Lu ◽  
Wenquan Sun ◽  
Yanhua Xu ◽  
...  

An Mn/Ce@red mud (RM) catalyst was prepared from RM via a doping–calcination method. Scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were used to characterize the surface morphology, crystal morphology, and elemental composition of the Mn/Ce@RM catalyst, respectively. In addition, preparation and catalytic ozonation conditions were optimized, and the mechanism of catalytic ozonation was discussed. Lastly, a fuzzy analytic hierarchy process (FAHP) was adopted to evaluate the degradation of coal chemical biochemical tail water. The best preparation conditions for the Mn/Ce@RM catalyst were found to be as follows: (1) active component loading of 3%, (2) Mn/Ce doping ratio of 2:1, (3) calcination temperature of 550 °C, (4) calcination time of 240 min, and (5) fly ash floating bead doping of 10%. The chemical oxygen demand (COD) removal rate was 76.58% under this preparation condition. The characterization results suggested that the pore structure of the optimized Mn/Ce@RM catalyst was significantly improved. Mn and Ce were successfully loaded on the catalyst in the form of MnO2 and CeO2. The best operating conditions in the study were as follows: (1) reaction time of 80 min, (2) initial pH of 9, (3) ozone dosage of 2.0 g/h, (4) catalyst dosage of 62.5 g/L, and (5) COD removal rate of 84.96%. Mechanism analysis results showed that hydroxyl radicals (•OH) played a leading role in degrading organics in the biochemical tail water, and adsorption of RM and direct oxidation of ozone played a secondary role. FAHP was established on the basis of environmental impact, economic benefit, and energy consumption. Comprehensive evaluation by FAHP demonstrated that D3 (with an ozone dosage of 2.0 g/H, a catalyst dosage of 62.5 g/L, initial pH of 9, reaction time of 80 min, and a COD removal rate of 84.96%) was the best operating condition.


2019 ◽  
Vol 125 ◽  
pp. 03008
Author(s):  
Rachmad Ardhianto ◽  
Arseto Yekti Bagastyo

Personal care wastewater contains pharmaceuticals and personal care products (PPCPs). The compounds were in organic pollutants which have to be treated before water can be discharged. Electrochemical processes such as electro-coagulation and electro-oxidation were used to remove non-biodegradable in wastewater. Electro-coagulation as pretreatment using aluminum electrodes as anode and cathode. Electro-oxidation using Ti/Pt, and Ti/IrO2 as anode electrodes and variation of current 0,6 A, 0,7 A, 0,8 A and 1,0 A. Aluminum electrodes has effectiveness in removing COD, and TSS in electrocoagulation. Using aluminum electrodes remove COD, and TSS 76.1% (5.41 g) and 90.3% (6.10 g). Under initial pH, aluminum electrode does not cause a change in pH from initial pH (4.8-4.9). The removal efficiency of electrooxidation process using aluminum electrocoagulation effluent COD using Ti/Pt and Ti/IrO2 were 34,30% (1,55 g) and 39,71% (1,80 g). Increasing current when using Ti/IrO2 causes the COD removal rate to be more effective than using Ti/Pt. removal COD with 1.0 A gave the optimum COD removal were 34,30% (2,3 Ah/L; 1,55 g) with Ti/Pt, and 39,71% (2,3 Ah/L; 1,80 g) with Ti/IrO2 compared to 0,6 A (1,4 Ah/L), 0,7 A (1,6 Ah/L), and 0.8 A (1,9 Ah/L).


2013 ◽  
Vol 295-298 ◽  
pp. 1263-1266
Author(s):  
Peng Wang ◽  
Zeng Zhang Wang

This research has discussed the biofilm formation on the treatment of pharmaceutical wastewater in BAF. The removal rate of COD and NH3-N and law of the performance on the temperature and height of fillers are studied here. The results show that the BAF can still maintain a higher COD removal rate in the 13°C-25°C, the average removal rate reaches 86.9%. The denitrification is impacted by low temperature that the average removal rate of 74.7%. Experiment shows that, from 0cm to 65cm part, the removal rate of COD reachs 86.3%. The good performance of NH3-N removal rate mainly concentrates in the height of 35cm ~ 95cm.


2012 ◽  
Vol 209-211 ◽  
pp. 1977-1980
Author(s):  
Wen Ping Cao ◽  
Hou Hu Zhang ◽  
Yin Mei Wang

The purpose of this study is to investigate the efficiency and characteristics for treatment of polluted landscape water using filamentous bamboo as bio-carrier. Results demonstrated that the COD removal rate could be increased more 13% because glucose was added into the raw. And the COD removal was mainly decided for the biofilm on the filamentous bamboo, which is 2.53 times higher than activitcd sludge in a batch hybrid unit. Additionally, Rich biological phases was obversed during the test.


2017 ◽  
Vol 20 (1) ◽  
Author(s):  
Xu Zeng ◽  
Jun Liu ◽  
Jianfu Zhao

AbstractWet oxidation of an industrial pharmaceutical wastewater with high concentration organic pollutants using hydrogen peroxide as an oxidant was investigated. Experiments were performed in a batch reactor to discuss the effects of reaction temperature, time, the hydrogen peroxide amount and catalyst with COD removal rate as an evaluation index. Results show that the highest COD removal rate, 81.6 %, was achieved at 240 ºC for 60 min with the addition of H


2014 ◽  
Vol 884-885 ◽  
pp. 29-32
Author(s):  
Hong Ya Li ◽  
Biao Yan ◽  
Bin Xia Zhao ◽  
Xiao Li Zhang

Fe2O3-CeO2/γ-Al2O3 was used as catalyst for treating the dye wastewater by catalytic wet peroxide oxidation method, the effect of reaction temperature, initial pH value of the wastewater, dosage of catalyst and hydrogen peroxide on the COD removal were studied. Results showed that 90.3% of COD removal rate can be obtained under the condition of 90°C, pH=7, 0.8g catalyst/100 mL wasterwater, and 6mL H2O2 /100 mL wasterwater.


2018 ◽  
Vol 2017 (3) ◽  
pp. 707-717 ◽  
Author(s):  
Yan Wang ◽  
Xianwei Wu ◽  
Ju Yi ◽  
Lijun Chen ◽  
Tianxiang Lan ◽  
...  

Abstract A novel iron-carbon (Fe/C) micro-electrolysis combined with H2O2 (ICMH) process was proposed to pretreat the printing and dyeing wastewater (PDW), using a micro-electrolysis filling. The effects of H2O2 concentration, reaction time, initial pH, and Fe/C dosage on chemical oxygen demand (COD) removal rate of PDW were optimized by response surface methodology (RSM). The maximum COD removal rate was approximately 77.65% after 186 min treatment, when the concentration of H2O2, initial pH and the dosage of Fe/C were 8.88 g/L, 1.5 and 837 g/L, respectively. Analysis of variance (ANOVA) showed a high coefficient of determination value (R2 = 0.9780). And H2O2 concentration and initial pH were the key factors to improve the treatment effect. UV-Vis spectra indicated that a significant blue shift at 220 nm, attributing that fused aromatic hydrocarbons were degraded effectively. 3D-EEM spectra analysis showed that the water samples of PDW mainly contained three kinds of organic matter: refractory fulvic acid, soluble microbial metabolites and aromatic proteins, and the degradation rate of these was 81.76%, 53.78% and 70.83%, respectively.


Sign in / Sign up

Export Citation Format

Share Document