scholarly journals Intranasal exposure of African green monkeys to SARS-CoV-2 results in acute phase pneumonia with shedding and lung injury still present in the early convalescence phase

Author(s):  
Robert W Cross ◽  
Krystle N Agans ◽  
Abhishek N Prasad ◽  
Viktoriya Borisevich ◽  
Courtney Woolsey ◽  
...  

Abstract We recently reported the development of the first African green monkey (AGM) model for COVID-19 based on a combined liquid intranasal (i.n.) and intratracheal (i.t.) exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we followed up on this work by assessing an i.n. particle only route of exposure using the LMA mucosal atomization device (MAD). Six AGMs were infected with SARS-CoV-2; three animals were euthanized near the peak stage of virus replication (day 5) and three animals were euthanized during the early convalescence period (day 34). All six AGMs supported robust SARS-CoV-2 replication and developed respiratory disease. Evidence of coagulation dysfunction as noted by a transient increases in aPTT and circulating levels of fibrinogen was observed in all AGMs. The level of SARS-CoV-2 replication and lung pathology was not quite as pronounced as previously reported with AGMs exposed by the combined i.n. and i.t. routes; however, SARS-CoV-2 RNA was detected in nasal swabs of some animals as late as day 15 and rectal swabs as late as day 28 after virus challenge. Of particular importance to this study, all three AGMs that were followed until the early convalescence stage of COVID-19 showed substantial lung pathology at necropsy as evidenced by multifocal chronic interstitial pneumonia and increased collagen deposition in alveolar walls despite the absence of detectable SARS-CoV-2 in any of the lungs of these animals. These findings are consistent with human COVID-19 further demonstrating that the AGM faithfully reproduces the human condition.

2020 ◽  
Author(s):  
Tom Geisbert ◽  
Robert Cross ◽  
Krystle Agans ◽  
Abhishek Prasad ◽  
Viktoriya Borisevich ◽  
...  

Abstract We recently reported the development of the first African green monkey (AGM) model for COVID-19 based on a combined liquid intranasal (i.n.) and intratracheal (i.t.) exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we followed up on this work by assessing an i.n. particle only route of exposure using the LMA mucosal atomization device (MAD). Six AGMs were infected with SARS-CoV-2; three animals were euthanized near the peak stage of virus replication (day 5) and three animals were euthanized during the early convalescence period (day 34). All six AGMs supported robust SARS-CoV-2 replication and developed respiratory disease. Evidence of coagulation dysfunction as noted by a transient increases in aPTT and circulating levels of fibrinogen was observed in all AGMs. The level of SARS-CoV-2 replication and lung pathology was not quite as pronounced as previously reported with AGMs exposed by the combined i.n. and i.t. routes; however, SARS-CoV-2 RNA was detected in nasal swabs of some animals as late as day 15 and rectal swabs as late as day 28 after virus challenge. Of particular importance to this study, all three AGMs that were followed until the early convalescence stage of COVID-19 showed substantial lung pathology at necropsy as evidenced by multifocal chronic interstitial pneumonia and increased collagen deposition in alveolar walls despite the absence of detectable SARS-CoV-2 in any of the lungs of these animals. These findings are consistent with human COVID-19 further demonstrating that the AGM faithfully reproduces the human condition.


2012 ◽  
Vol 56 (12) ◽  
pp. 6328-6333 ◽  
Author(s):  
Donald F. Smee ◽  
Mark von Itzstein ◽  
Beenu Bhatt ◽  
E. Bart Tarbet

ABSTRACTCompounds lacking oral activity may be delivered intranasally to treat influenza virus infections in mice. However, intranasal treatments greatly enhance the virulence of such virus infections. This can be partially compensated for by giving reduced virus challenge doses. These can be 100- to 1,000-fold lower than infections without such treatment and still cause equivalent mortality. We found that intranasal liquid treatments facilitate virus production (probably through enhanced virus spread) and that lung pneumonia was delayed by only 2 days relative to a 1,000-fold higher virus challenge dose not accompanied by intranasal treatments. In one study, zanamivir was 90 to 100% effective at 10 mg/kg/day by oral, intraperitoneal, and intramuscular routes against influenza A/California/04/2009 (H1N1) virus in mice. However, the same compound administered intranasally at 20 mg/kg/day for 5 days gave no protection from death although the time to death was significantly delayed. A related compound, Neu5Ac2en (N-acetyl-2,3-dehydro-2-deoxyneuraminic acid), was ineffective at 100 mg/kg/day. Intranasal zanamivir and Neu5Ac2en were 70 to 100% protective against influenza A/NWS/33 (H1N1) virus infections at 0.1 to 10 and 30 to 100 mg/kg/day, respectively. Somewhat more difficult to treat was A/Victoria/3/75 virus that required 10 mg/kg/day of zanamivir to achieve full protection. These results illustrate that treatment of influenza virus infections by the intranasal route requires consideration of both virus challenge dose and virus strain in order to avoid compromising the effectiveness of a potentially useful antiviral agent. In addition, the intranasal treatments were shown to facilitate virus replication and promote lung pathology.


2017 ◽  
Vol 162 (2) ◽  
pp. 462-474 ◽  
Author(s):  
Timothy J Flanigan ◽  
Julie E Anderson ◽  
Ikram Elayan ◽  
Antiño R Allen ◽  
Sherry A Ferguson

Abstract Postchemotherapy cognitive impairment, or PCCI, is a common complaint, particularly among breast cancer patients. However, the exact nature of PCCI appears complex. To model the human condition, ovariectomized C57BL/6J mice were treated intravenous weekly for 4 weeks with saline, 2 mg/kg doxorubicin (DOX), 50 mg/kg cyclophosphamide (CYP), or DOX + CYP. For the subsequent 10 weeks, mice were assessed on several behavioral tests, including those measuring spatial learning and memory. After sacrifice, hippocampal spine density and morphology in the dentate gyrus, CA1, and CA3 regions were measured. Additionally, hippocampal levels of total glutathione, glutathione disulfide, MnSOD, CuZnSOD, and cytokines were measured. Body weight decreased in all groups during treatment, but recovered post-treatment. Most behaviors were unaffected by drug treatment: Open field activity, motor coordination, grip strength, water maze and Barnes maze performance, buried food test performance, and novel object and object location recognition tests. There were some significant effects of CYP and DOX + CYP treatment during the initial test of home cage behavior, but these did not persist into the second and third test times. Density of stubby spines, but not mushroom or thin spines, in the dentate gyrus was significantly decreased in the DOX, CYP, and DOX + CYP treatment groups. There were no significant effects in the CA1 or CA3 regions. CuZnSOD levels were significantly increased in DOX + CYP-treated mice; other hippocampal antioxidant levels were unaffected. Most cytokines showed no treatment-related effects, but IL-1β, IL-6, and IL-12 were slightly reduced in mice treated with DOX + CYP. Although the animal model, route of exposure, and DOX and CYP doses used here were reflective of human exposure, there were only sporadic effects due to chemotherapeutic treatment.


2016 ◽  
Vol 9 (2) ◽  
pp. 193-202 ◽  
Author(s):  
Daniela S. Rajao ◽  
Crystal L. Loving ◽  
Emily H. Waide ◽  
Phillip C. Gauger ◽  
Jack C.M. Dekkers ◽  
...  

Influenza A viruses (IAV) infect many host species, including humans and pigs. Severe combined immunodeficiency (SCID) is a condition characterized by a deficiency of T, B, and/or natural killer (NK) cells. Animal models of SCID have great value for biomedical research. Here, we evaluated the pathogenesis and the innate immune response to the 2009 H1N1 pandemic IAV (H1N1pdm09) using a recently identified line of naturally occurring SCID pigs deficient in T and B lymphocytes that still have functional NK cells. SCID pigs challenged with H1N1pdm09 showed milder lung pathology compared to the non-SCID heterozygous carrier pigs. Viral titers in the lungs and nasal swabs of challenged SCID pigs were significantly higher than in carrier pigs 7 days postinfection, despite higher levels of IL-1β and IFN-α in the lungs of SCID pigs. The lower levels of pulmonary pathology were associated with the T and B cell absence in response to infection. The higher viral titers, prolonged shedding, and delayed viral clearance indicated that innate immunity was insufficient for controlling IAV in pigs. This recently identified line of SCID pigs provides a valuable model to understand the immune mechanisms associated with influenza protection and recovery in a natural host.


Author(s):  
Xiaoyan Liu ◽  
Zhe Li ◽  
Shuai Liu ◽  
Zhanghua Chen ◽  
Jing Sun ◽  
...  

AbstractThe human coronavirus HCoV-19 infection can cause acute respiratory distress syndrome (ARDS), hypercoagulability, hypertension, extrapulmonary multiorgan dysfunction. Effective antiviral and anti-coagulation agents with safe clinical profiles are urgently needed to improve the overall prognosis. We screened an FDA approved drug library and found that an anticoagulant agent dipyridamole (DIP) suppressed HCoV-19 replication at an EC50 of 100 nM in vitro. It also elicited potent type I interferon responses and ameliorated lung pathology in a viral pneumonia model. In analysis of twelve HCoV-19 infected patients with prophylactic anti-coagulation therapy, we found that DIP supplementation was associated with significantly increased platelet and lymphocyte counts and decreased D-dimer levels in comparison to control patients. Two weeks after initiation of DIP treatment, 3 of the 6 severe cases (60%) and all 4 of the mild cases (100%) were discharged from the hospital. One critically ill patient with extremely high levels of D-dimer and lymphopenia at the time of receiving DIP passed away. All other patients were in clinical remission. In summary, HCoV-19 infected patients could potentially benefit from DIP adjunctive therapy by reducing viral replication, suppressing hypercoagulability and enhancing immune recovery. Larger scale clinical trials of DIP are needed to validate these therapeutic effects.


Author(s):  
Jasper Fuk-Woo Chan ◽  
Anna Jinxia Zhang ◽  
Shuofeng Yuan ◽  
Vincent Kwok-Man Poon ◽  
Chris Chung-Sing Chan ◽  
...  

Abstract Background A physiological small-animal model that resembles COVID-19 with low mortality is lacking. Methods Molecular docking on the binding between angiotensin-converting enzyme 2 (ACE2) of common laboratory mammals and the receptor-binding domain of the surface spike protein of SARS-CoV-2 suggested that the golden Syrian hamster is an option. Virus challenge, contact transmission, and passive immunoprophylaxis studies were performed. Serial organ tissues and blood were harvested for histopathology, viral load and titer, chemokine/cytokine level, and neutralizing antibody titer. Results The Syrian hamster could be consistently infected by SARS-CoV-2. Maximal clinical signs of rapid breathing, weight loss, histopathological changes from the initial exudative phase of diffuse alveolar damage with extensive apoptosis to the later proliferative phase of tissue repair, airway and intestinal involvement with viral nucleocapsid protein expression, high lung viral load, and spleen and lymphoid atrophy associated with marked chemokine/cytokine activation were observed within the first week of virus challenge. The mean lung virus titer was between 105 and 107 TCID50/g. Challenged index hamsters consistently infected naive contact hamsters housed within the same cages, resulting in similar pathology but not weight loss. All infected hamsters recovered and developed mean serum neutralizing antibody titers ≥1:427 14 days postchallenge. Immunoprophylaxis with early convalescent serum achieved significant decrease in lung viral load but not in lung pathology. No consistent nonsynonymous adaptive mutation of the spike was found in viruses isolated from the infected hamsters. Conclusions Besides satisfying Koch’s postulates, this readily available hamster model is an important tool for studying transmission, pathogenesis, treatment, and vaccination against SARS-CoV-2.


Author(s):  
Courtney Woolsey ◽  
Viktoriya Borisevich ◽  
Abhishek N. Prasad ◽  
Krystle N. Agans ◽  
Daniel J. Deer ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen candidate vaccines and treatments. Nonhuman primates (NHP) are considered the gold standard model for many infectious pathogens as they usually best reflect the human condition. Here, we show that African green monkeys support a high level of SARS-CoV-2 replication and develop pronounced respiratory disease that may be more substantial than reported for other NHP species including cynomolgus and rhesus macaques. In addition, SARS-CoV-2 was detected in mucosal samples of all animals including feces of several animals as late as 15 days after virus exposure. Importantly, we show that virus replication and respiratory disease can be produced in African green monkeys using a much lower and more natural dose of SARS-CoV-2 than has been employed in other NHP studies.


2021 ◽  
Author(s):  
Chia-En Lien ◽  
Yi-Jiun Lin ◽  
Tsun-Yung Kuo ◽  
John D Campbell ◽  
Paula Traquina ◽  
...  

The COVID-19 pandemic presents an unprecedented challenge to global public health. Rapid development and deployment of safe and effective vaccines are imperative to control the pandemic. In the current study, we applied our adjuvanted stable prefusion SARS-CoV-2 spike (S-2P)-based vaccine, MVC-COV1901, to hamster models to demonstrate immunogenicity and protection from virus challenge. Golden Syrian hamsters immunized intramuscularly with two injections of 1 μg or 5 μg of S-2P adjuvanted with CpG 1018 and aluminum hydroxide (alum) were challenged intranasally with SARS-CoV-2. Prior to virus challenge, the vaccine induced high levels of neutralizing antibodies with 10,000-fold higher IgG level and an average of 50-fold higher pseudovirus neutralizing titers in either dose groups than vehicle or adjuvant control groups. Six days after infection, vaccinated hamsters did not display any weight loss associated with infection and had significantly reduced lung pathology and most importantly, lung viral load levels were reduced to lower than detection limit compared to unvaccinated animals. Vaccination with either 1 μg or 5 μg of adjuvanted S-2P produced comparable immunogenicity and protection from infection. This study builds upon our previous results to support the clinical development of MVC-COV1901 as a safe, highly immunogenic, and protective COVID-19 vaccine.


2021 ◽  
Author(s):  
Tamarand L Darling ◽  
Boaling Ying ◽  
Bradley Whitener ◽  
Laura VanBlargan ◽  
Traci L Bricker ◽  
...  

Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019, viral variants with greater transmissibility or immune evasion properties have arisen, which could jeopardize recently deployed vaccine and antibody-based countermeasures. Here, we evaluated in mice and hamsters the efficacy of preclinical non-GMP Moderna mRNA vaccine (mRNA-1273) and the Johnson & Johnson recombinant adenoviral-vectored vaccine (Ad26.COV2.S) against the B.1.621 (Mu) South American variant of SARS-CoV-2, which contains spike mutations T95I, Y144S, Y145N, R346K, E484K, N501Y, D614G, P681H, and D950N. Immunization of 129S2 and K18-human ACE2 transgenic mice with mRNA-1273 vaccine protected against weight loss, lung infection, and lung pathology after challenge with B.1.621 or WA1/2020 N501Y/D614G SARS-CoV-2 strain. Similarly, immunization of 129S2 mice and Syrian hamsters with a high dose of Ad26.COV2.S reduced lung infection after B.1.621 virus challenge. Thus, immunity induced by mRNA-1273 or Ad26.COV2.S vaccines can protect against the B.1.621 variant of SARS-CoV-2 in multiple animal models.


2021 ◽  
Author(s):  
Felix W Frueh ◽  
Daniel C Maneval ◽  
Rudolph P Bohm ◽  
Jason P Dufour ◽  
Robert V Blair ◽  
...  

The COVID-19 pandemic resulted from global infection by the SARS-CoV-2 coronavirus and rapidly emerged as an urgent health issue requiring effective treatments. To initiate infection, the Spike protein of SARS-CoV-2 requires proteolytic processing mediated by host proteases. Among the host proteases proposed to carry out this activation is the cysteine protease cathepsin L. Inhibiting cathepsin L has been proposed as a therapeutic strategy for treating COVID-19. SLV213 (K777) is an orally administered small molecule protease inhibitor that exhibits in vitro activity against a range of viruses, including SARS-CoV-2. To confirm efficacy in vivo, K777 was evaluated in an African green monkey (AGM) model of COVID-19. A pilot experiment was designed to test K777 in a prophylactic setting, animals were pre-treated with 100mg/kg K777 (N=4) or vehicle (N=2) before inoculation with SARS-CoV-2. Initial data demonstrated that K777 treatment reduced pulmonary pathology compared to vehicle-treated animals. A second study was designed to test activity in a therapeutic setting, with K777 treatment (33 mg/kg or 100 mg/kg) initiated 8 hours after exposure to the virus. In both experiments, animals received K777 daily via oral gavage for 7 days. Vehicle-treated animals exhibited higher lung weights, pleuritis, and diffuse alveolar damage. In contrast, lung pathology was reduced in K777-treated monkeys, and histopathological analyses confirmed the lack of diffuse alveolar damage. Antiviral effects were further demonstrated by quantitative reductions in viral load of samples collected from upper and lower airways. These preclinical data support the potential for early SLV213 treatment in COVID-19 patients to prevent severe lung pathology and disease progression.


Sign in / Sign up

Export Citation Format

Share Document