scholarly journals Potential Anti-Fouling Properties of Extracts from the Mediterranean Sponge Ircinia Oros: An Ecotoxicological Screening

Author(s):  
Lucia De Marchi ◽  
Carlo Pretti ◽  
Alessia Cuccaro ◽  
Matteo Oliva ◽  
Federica Tardelli ◽  
...  

Abstract The phylum Porifera and their symbionts produce a wide variety of bioactive compounds, playing a central role in their ecology and evolution. In this study, four different extracts (obtained by non-polar and semi-polar extraction methodologies) from the Mediterranean sponge Ircinia oros were tested for their potential antifouling purposes. The evaluation was performed using three different target species, associated with three different endpoints: the marine bacterium Aliivibrio fischeri (inhibition of bioluminescence), the marine diatom Phaeodactylum tricornutum (inhibition of growth) and different development stages of the brackish-water serpulid Ficopomatus enigmaticus (gametes: sperm motion, vitality inhibition and cellular damage; larvae: development; adults: AChE (acetylcholinesterase)-inhibitory activity). Effects of extracts were species-specific and did not vary among different extraction methodologies. In particular, no significant reduction of bioluminescence of A. fischeri was observed for all tested samples. By contrast, extracts inhibited P. tricornutum growth and had toxic effects on different F. enigmaticus’ developmental stages. Obtained results suggest that the proposed test battery can be considered a suitable tool as bioactivity screening of marine natural products.

Author(s):  
Lucia De Marchi ◽  
Carlo Pretti ◽  
Alessia Cuccaro ◽  
Matteo Oliva ◽  
Federica Tardelli ◽  
...  

AbstractThe phylum Porifera and their symbionts produce a wide variety of bioactive compounds, playing a central role in their ecology and evolution. In this study, four different extracts (obtained by non-polar and semi-polar extraction methodologies) of the Mediterranean sponge Ircinia oros were tested through a multi-bioassay integrated approach to assess their antifouling potential. Tests were performed using three common species, associated with three different endpoints: the marine bacterium Aliivibrio fischeri (inhibition of bioluminescence), the marine diatom Phaeodactylum tricornutum (inhibition of growth), and different development stages of the brackish water serpulid Ficopomatus enigmaticus (gametes: sperm motion, vitality inhibition and cellular damage; larvae: development; adults: AChE (acetylcholinesterase)-inhibitory activity). The effects of extracts were species specific and did not vary among different extraction methodologies. In particular, no significant reduction of bioluminescence of A. fischeri was observed for all tested samples. By contrast, extracts inhibited P. tricornutum growth and had toxic effects on different F. enigmaticus’ developmental stages. Our results suggest that the proposed test battery can be considered a suitable tool as bioactivity screening of marine natural products.


2021 ◽  
Vol 22 (3) ◽  
pp. 1210
Author(s):  
Krzysztof Formicki ◽  
Agata Korzelecka-Orkisz ◽  
Adam Tański

The number of sources of anthropogenic magnetic and electromagnetic fields generated by various underwater facilities, industrial equipment, and transferring devices in aquatic environment is increasing. These have an effect on an array of fish life processes, but especially the early developmental stages. The magnitude of these effects depends on field strength and time of exposure and is species-specific. We review studies on the effect of magnetic fields on the course of embryogenesis, with special reference to survival, the size of the embryos, embryonic motor function, changes in pigment cells, respiration hatching, and directional reactions. We also describe the effect of magnetic fields on sperm motility and egg activation. Magnetic fields can exert positive effects, as in the case of the considerable extension of sperm capability of activation, or have a negative influence in the form of a disturbance in heart rate or developmental instability in inner ear organs.


ChemInform ◽  
2016 ◽  
Vol 47 (3) ◽  
Author(s):  
Huiqin Chen ◽  
Nihal Aktas ◽  
Belma Konuklugil ◽  
Attila Mandi ◽  
Georgios Daletos ◽  
...  

Author(s):  
Chenyan Shi ◽  
Lu Zhao ◽  
Evans Atoni ◽  
Weifeng Zeng ◽  
Xiaomin Hu ◽  
...  

AbstractMosquitoes belonging to the genus Aedes can efficiently transmit many pathogenic arboviruses, placing a great burden on public health worldwide. In addition, they also carry a number of insect specific viruses (ISVs), and it was recently suggested that some of these ISVs might form a stable species-specific “core virome” in mosquito populations. However, little is known about such a core virome in laboratory colonies and if it is present across different developmental stages. In this study, we compared the viromes in eggs, larvae, pupae and adults of Aedes albopictus mosquitoes collected from the field as well as from a lab colony. The virome in lab-derived Ae. albopictus is very stable across all stages, consistent with a vertical transmission route of these viruses, forming a “vertically transmitted core virome”. The different stages of field collected Ae. albopictus mosquitoes also contains this stable vertically transmitted core virome as well as another set of viruses shared by mosquitoes across different stages, which might be an “environment derived core virome”. Both these vertically and environmentally transmitted core viromes in Ae. albopictus deserve more attention with respect to their effects on vector competence for important medically relevant arboviruses. To further study this core set of ISVs, we screened 46 publically available SRA viral metagenomic dataset of mosquitoes belonging to the genus Aedes. Some of the identified core ISVs are identified in the majority of SRAs. In addition, a novel virus, Aedes phasmavirus, is found to be distantly related to Yongsan bunyavirus 1, and the genomes of the core virus Phasi Charoen-like phasivirus is highly prevalent in the majority of the tested samples, with nucleotide identities ranging from 94% to 99%. Finally, Guadeloupe mosquito virus, and some related viruses formed three separated phylogenetic clades. How these core ISVs influence the biology of mosquito host, arboviruses infection and evolution deserve to be further explored.


Marine Drugs ◽  
2018 ◽  
Vol 16 (8) ◽  
pp. 272 ◽  
Author(s):  
Zhiqian Yi ◽  
Yixi Su ◽  
Maonian Xu ◽  
Andreas Bergmann ◽  
Saevar Ingthorsson ◽  
...  

Diatoms are a major group of unicellular algae that are rich in lipids and carotenoids. However, sustained research efforts are needed to improve the strain performance for high product yields towards commercialization. In this study, we generated a number of mutants of the model diatom Phaeodactylum tricornutum, a cosmopolitan species that has also been found in Nordic region, using the chemical mutagens ethyl methanesulfonate (EMS) and N-methyl-N′-nitro-N-nitrosoguanidine (NTG). We found that both chlorophyll a and neutral lipids had a significant correlation with carotenoid content and these correlations were better during exponential growth than in the stationary growth phase. Then, we studied P. tricornutum common metabolic pathways and analyzed correlated enzymatic reactions between fucoxanthin synthesis and pigmentation or lipid metabolism through a genome-scale metabolic model. The integration of the computational results with liquid chromatography-mass spectrometry data revealed key compounds underlying the correlative metabolic pathways. Approximately 1000 strains were screened using fluorescence-based high-throughput method and five mutants selected had 33% or higher total carotenoids than the wild type, in which four strains remained stable in the long term and the top mutant exhibited an increase of 69.3% in fucoxanthin content compared to the wild type. The platform described in this study may be applied to the screening of other high performing diatom strains for industrial applications.


Sign in / Sign up

Export Citation Format

Share Document