scholarly journals Stepwise membrane binding of the C2 domains of the extended synaptotagmins revealed by optical tweezers

Author(s):  
Jinghua Ge ◽  
Xin Bian ◽  
Lu Ma ◽  
Yiying Cai ◽  
Yanghui Li ◽  
...  

Abstract Extended synaptotagmins (E-Syts) mediate lipid exchange between the endoplasmic reticulum (ER) and the plasma membrane (PM). Anchored on ER, E-Syts bind the PM via an array of C2 domains in a Ca2+- and lipid-dependent manner, drawing the two membranes close to facilitate lipid exchange. How these C2 domains bind the PM and regulate the ER-PM distance have not been well understood. Here, we applied optical tweezers to dissect PM membrane binding by E-Syt1 and E-Syt2. We detected Ca2+- and lipid-dependent membrane binding kinetics of both E-Syts and determined the binding energies and rates of individual C2 domains or pairs. We incorporated these parameters in a theoretical model to recapitulate various properties of E-Syt-mediated membrane contacts observed in vivo, including their equilibrium distances and probabilities. Our methods can be applied to study other proteins containing multiple membrane-binding domains linked by disordered polypeptides.

1994 ◽  
Vol 14 (5) ◽  
pp. 3329-3338
Author(s):  
B Cheskis ◽  
L P Freedman

Protein dimerization facilitates cooperative, high-affinity interactions with DNA. Nuclear hormone receptors, for example, bind either as homodimers or as heterodimers with retinoid X receptors (RXR) to half-site repeats that are stabilized by protein-protein interactions mediated by residues within both the DNA- and ligand-binding domains. In vivo, ligand binding among the subfamily of steroid receptors unmasks the nuclear localization and DNA-binding domains from a complex with auxiliary factors such as the heat shock proteins. However, the role of ligand is less clear among nuclear receptors, since they are constitutively localized to the nucleus and are presumably associated with DNA in the absence of ligand. In this study, we have begun to explore the role of the ligand in vitamin D3 receptor (VDR) function by examining its effect on receptor homodimer and heterodimer formation. Our results demonstrate that VDR is a monomer in solution; VDR binding to a specific DNA element leads to the formation of a homodimeric complex through a monomeric intermediate. We find that 1,25-dihydroxyvitamin D3, the ligand for VDR, decreases the amount of the DNA-bound VDR homodimer complex. It does so by significantly decreasing the rate of conversion of DNA-bound monomer to homodimer and at the same time enhancing the dissociation of the dimeric complex. This effectively stabilizes the bound monomeric species, which in turn serves to favor the formation of a VDR-RXR heterodimer. The ligand for RXR, 9-cis retinoic acid, has the opposite effect of destabilizing the heterodimeric-DNA complex. These results may explain how a nuclear receptor can bind DNA constitutively but still act to regulate transcription in a fully hormone-dependent manner.


1994 ◽  
Vol 14 (5) ◽  
pp. 3329-3338 ◽  
Author(s):  
B Cheskis ◽  
L P Freedman

Protein dimerization facilitates cooperative, high-affinity interactions with DNA. Nuclear hormone receptors, for example, bind either as homodimers or as heterodimers with retinoid X receptors (RXR) to half-site repeats that are stabilized by protein-protein interactions mediated by residues within both the DNA- and ligand-binding domains. In vivo, ligand binding among the subfamily of steroid receptors unmasks the nuclear localization and DNA-binding domains from a complex with auxiliary factors such as the heat shock proteins. However, the role of ligand is less clear among nuclear receptors, since they are constitutively localized to the nucleus and are presumably associated with DNA in the absence of ligand. In this study, we have begun to explore the role of the ligand in vitamin D3 receptor (VDR) function by examining its effect on receptor homodimer and heterodimer formation. Our results demonstrate that VDR is a monomer in solution; VDR binding to a specific DNA element leads to the formation of a homodimeric complex through a monomeric intermediate. We find that 1,25-dihydroxyvitamin D3, the ligand for VDR, decreases the amount of the DNA-bound VDR homodimer complex. It does so by significantly decreasing the rate of conversion of DNA-bound monomer to homodimer and at the same time enhancing the dissociation of the dimeric complex. This effectively stabilizes the bound monomeric species, which in turn serves to favor the formation of a VDR-RXR heterodimer. The ligand for RXR, 9-cis retinoic acid, has the opposite effect of destabilizing the heterodimeric-DNA complex. These results may explain how a nuclear receptor can bind DNA constitutively but still act to regulate transcription in a fully hormone-dependent manner.


2017 ◽  
Author(s):  
Lu Ma ◽  
Yiying Cai ◽  
Yanghui Li ◽  
Junyi Jiao ◽  
Zhenyong Wu ◽  
...  

AbstractMany biological processes rely on protein-membrane interactions in the presence of mechanical forces, yet high resolution methods to quantify such interactions are lacking. Here, we describe a single-molecule force spectroscopy approach to quantify membrane binding of C2 domains in Synaptotagmin-1 (Syt1) and Extended Synaptotagmin-2 (E-Syt2). Syts and E-Syts bind the plasma membrane via multiple C2 domains, bridging the plasma membrane with synaptic vesicles or endoplasmic reticulum to regulate membrane fusion or lipid exchange, respectively. In our approach single proteins attached to membranes supported on silica beads are pulled by optical tweezers, allowing membrane binding and unbinding transitions to be measured with unprecedented spatiotemporal resolution. C2 domains from either protein resisted unbinding forces of 2-7 pN and had binding energies of 4-14 kBT per C2 domain. Regulation by bilayer composition or Ca2+ recapitulated known properties of both proteins. The method can be widely applied to study protein-membrane interactions.


2021 ◽  
Author(s):  
Sarah E Cabral ◽  
Kimberly Mowry

RNA localization and biomolecular condensate formation are key biological strategies for organizing the cytoplasm and generating cellular and developmental polarity. While enrichment of RNAs and RNA-binding proteins (RBPs) is a hallmark of both processes, the functional and structural roles of RNA-RNA and RNA-protein interactions within condensates remain unclear. Recent work from our laboratory has shown that RNAs required for germ layer patterning in Xenopus oocytes localize in novel biomolecular condensates, termed Localization bodies (L-bodies). L-bodies are composed of a non-dynamic RNA phase enmeshed in a more dynamic protein-containing phase. However, the interactions that drive the biophysical characteristics of L-bodies are not known. Here, we test the role of RNA-protein interactions using an L-body RNA-binding protein, PTBP3, which contains four RNA-binding domains (RBDs). We find that binding of RNA to PTB is required for both RNA and PTBP3 to be enriched in L-bodies in vivo. Importantly, while RNA binding to a single RBD is sufficient to drive PTBP3 localization to L-bodies, interactions between multiple RRMs and RNA tunes the dynamics of PTBP3 within L-bodies. In vitro, recombinant PTBP3 phase separates into non-dynamic structures in an RNA-dependent manner, supporting a role for RNA-protein interactions as a driver of both recruitment of components to L-bodies and the dynamics of the components after enrichment. Our results point to a model where RNA serves as a concentration-dependent, non-dynamic substructure and multivalent interactions with RNA are a key driver of protein dynamics.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Lu Ma ◽  
Yiying Cai ◽  
Yanghui Li ◽  
Junyi Jiao ◽  
Zhenyong Wu ◽  
...  

Many biological processes rely on protein–membrane interactions in the presence of mechanical forces, yet high resolution methods to quantify such interactions are lacking. Here, we describe a single-molecule force spectroscopy approach to quantify membrane binding of C2 domains in Synaptotagmin-1 (Syt1) and Extended Synaptotagmin-2 (E-Syt2). Syts and E-Syts bind the plasma membrane via multiple C2 domains, bridging the plasma membrane with synaptic vesicles or endoplasmic reticulum to regulate membrane fusion or lipid exchange, respectively. In our approach, single proteins attached to membranes supported on silica beads are pulled by optical tweezers, allowing membrane binding and unbinding transitions to be measured with unprecedented spatiotemporal resolution. C2 domains from either protein resisted unbinding forces of 2–7 pN and had binding energies of 4–14 kBT per C2 domain. Regulation by bilayer composition or Ca2+ recapitulated known properties of both proteins. The method can be widely applied to study protein–membrane interactions.


2013 ◽  
Vol 450 (3) ◽  
pp. 559-571 ◽  
Author(s):  
Benoît-Joseph Laventie ◽  
Cristina Potrich ◽  
Cédric Atmanène ◽  
Maher Saleh ◽  
Olivier Joubert ◽  
...  

PVL (Panton–Valentine leukocidin) and other Staphylococcus aureus β-stranded pore-forming toxins are important virulence factors involved in various pathologies that are often necrotizing. The present study characterized leukotoxin inhibition by selected SCns (p-sulfonato-calix[n]arenes): SC4, SC6 and SC8. These chemicals have no toxic effects on human erythrocytes or neutrophils, and some are able to inhibit both the activity of and the cell lysis by leukotoxins in a dose-dependent manner. Depending on the type of leukotoxins and SCns, flow cytometry revealed IC50 values of 6–22 μM for Ca2+ activation and of 2–50 μM for cell lysis. SCns were observed to affect membrane binding of class S proteins responsible for cell specificity. Electrospray MS and surface plasmon resonance established supramolecular interactions (1:1 stoichiometry) between SCns and class S proteins in solution, but not class F proteins. The membrane-binding affinity of S proteins was Kd=0.07–6.2 nM. The binding ability was completely abolished by SCns at different concentrations according to the number of benzenes (30–300 μM; SC8>SC6≫SC4). The inhibitory properties of SCns were also observed in vivo in a rabbit model of PVL-induced endophthalmitis. These calixarenes may represent new therapeutic avenues aimed at minimizing inflammatory reactions and necrosis due to certain virulence factors.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A669-A669
Author(s):  
Michelle Nelson ◽  
Robert Miller ◽  
Gabriele Blahnik-Fagan ◽  
Lauren Loh ◽  
Danielle Van Citters ◽  
...  

Background4-1BB (CD137) and OX40 (CD134) are critical activation-induced co-stimulatory receptors that regulate immune responses of activated T and NK cells by enhancing proliferation, cytokine production, survival, and cytolytic activity. A superagonist 4-1BB antibody has shown clinical activity but severe toxicities. APVO603, is a 4-1BB x OX40 targeting bispecific antibody with conditional agonism, activating these receptors only when both are co-engaged. The Fc portion was mutated to eliminate FcγR-mediated interactions. Co-stimulation through 4-1BB and OX40 has the potential to amplify the cytotoxic function and the number of activated T and NK cells in multiple solid tumor indications.1–2Methods scFv binding domains to 4-1BB and OX40 were optimized to increase affinity, function and stability, and then incorporated into the ADAPTIR™ bispecific antibody platform to produce the APVO603 lead candidate. NF-κB/luciferase reporter cell lines expressing OX40 or 4-1BB were initially used to assess the agonistic function of APVO603’s binding domains. Primary PBMC were sub-optimally stimulated with an anti-CD3 antibody and T and NK cell proliferation was assessed using Cell TraceTM-labelled PBMC. Cytokine secretion was measured at 48 hrs using Luminex-based assays. For in vitro tumor lysis studies, PBMC were co-cultured with tumor cells expressing a tumor-associated antigen (TAA) and activated with TAA x CD3 bispecific protein. 7-AAD expression was assessed on tumor cells at 72 hrs. The in vivo therapeutic efficacy of APVO603 was evaluated using a murine MB49 bladder cancer model in human 4-1BB and OX40 double knock-in mice.ResultsAPVO603 stimulates 4-1BB and OX40 NF-κB/luciferase reporter activity in a dose-dependent manner, and is strictly dependent on engagement of the reciprocal receptor to elicit 4-1BB or OX40 activity. In primary PBMC assays, APVO603 induces synergistic proliferation of CD4+, CD8+ T and NK cells when compared to OX40 or 4-1BB monospecific molecules with a wt Fc, either individually or in combination. Additionally, APVO603 enhances proinflammatory cytokine production and granzyme B expression, and augments in vitro tumor cell lysis induced by a TAAx CD3 engager. In vivo, APVO603 reduces growth of established MB49 tumors in human 4-1BB and OX40 double knock-in mice.ConclusionsAPVO603 is a dual-agonistic bispecific antibody that augments the effector function of activated CD4+ and CD8+ T and NK cells in a dose-dependent manner, and reduces growth of established tumors in vivo. This preclinical data, demonstrates conditional dual stimulation of 4-1BB and OX40 and supports further development of APVO603, a promising immuno-oncology therapeutic with potential for benefit in solid tumors.Ethics ApprovalTreatment of study animals was in accordance with conditions specified in the Guide for the Care and Use of Laboratory Animals, and the study protocol (ACUP 20) was approved by the Institutional Animal Care and Use Committee (IACUC).ReferencesBandyopadhyay S, Long M, Qui H, Hagymasi A, Slaiby A, Mihalyo M, Aguila H, Mittler R, Vella A, Adler A. Self-antigen prevents CD8 T cell effector differentiation by CD134 and CD137 dual costimulation. J Immunol 2008;181(11):7728–37.Ryan J, Mittal P, Menoret A, Svedova J, Wasser J, Adler A, Vella A. A novel biologic platform elicits profound T cell costimuloaroty activity and antitumor immunity in mice. Cancer Immunol Immunother 2018;67(4):605–613.


Parasitology ◽  
2007 ◽  
Vol 134 (9) ◽  
pp. 1253-1262 ◽  
Author(s):  
S. BRUNET ◽  
J. AUFRERE ◽  
F. El BABILI ◽  
I. FOURASTE ◽  
H. HOSTE

SUMMARYThe mode of action of bioactive plants on gastrointestinal nematodes remains obscure. Previous in vitro studies showed that exsheathment was significantly disturbed after contact with tannin-rich extracts. However, the role of important factors (extract concentration, parasite species) has not been assessed and no information is available on the occurrence in vivo. These questions represent the objectives of this study. The model incorporated the parasites Haemonchus contortus and Trichostrongylus colubriformis with sainfoin as the bioactive plant. A set of in vitro assays was performed, measuring the changes observed, after 3 h of contact with increasing concentrations of sainfoin, on the rate of artificial exsheathment. The results indicated that sainfoin extracts interfered with exsheathment in a dose-dependent manner and the process overall was similar for both nematodes. The restoration of control values observed after adding PEG to extracts confirms a major role for tannins. A second study was performed in vivo on rumen-cannulated sheep fed with different proportions of sainfoin in the diet to verify these in vitro results. The consumption of a higher proportion of sainfoin was indeed associated with significant delays in Haemonchus exsheathment. Overall, the results confirmed that interference with the early step of nematode infection might be one of the modes of action that contributes to the anthelmintic properties of tanniniferous plants.


2001 ◽  
Vol 359 (3) ◽  
pp. 679-685 ◽  
Author(s):  
Robert V. STAHELIN ◽  
Wonhwa CHO

The C2 domain is a membrane-targeting domain found in many cellular proteins involved in signal transduction or membrane trafficking. The majority of C2 domains co-ordinate multiple Ca2+ ions and bind the membrane in a Ca2+-dependent manner. To understand the mechanisms by which Ca2+ mediates the membrane binding of C2 domains, we measured the membrane binding of the C2 domains of group IV cytosolic phospholipase A2 (cPLA2) and protein kinase C-α (PKC-α) by surface plasmon resonance and lipid monolayer analyses. Ca2+ ions mainly slow the membrane dissociation of cPLA2-C2, while modulating both membrane association and dissociation rates for PKC-α-C2. Further studies with selected mutants showed that for cPLA2 a Ca2+ ion bound to the C2 domain of cPLA2 induces the intra-domain conformational change that leads to the membrane penetration of the C2 domain whereas the other Ca2+ is not directly involved in membrane binding. For PKC-α, a Ca2+ ion induces the inter-domain conformational changes of the protein and the membrane penetration of non-C2 residues. The other Ca2+ ion of PKC-α-C2 is involved in more complex interactions with the membrane, including both non-specific and specific electrostatic interactions. Together, these studies of isolated C2 domains and their parent proteins allow for the determination of the distinct and specific roles of each Ca2+ ion bound to different C2 domains.


Sign in / Sign up

Export Citation Format

Share Document