scholarly journals An Approach For Drain Current Modeling Including Quantum Mechanical Effects For A DMDG Junctionless Field Effect Nanowire Transistor

Author(s):  
Nipanka Bora

Abstract This paper presents the effects of quantum confinements on the surface potential, threshold voltage, drain current, transconductance, and drain conductance of a Dual Material Double Gate Junctionless Field Effect Nanowire Transistor (DMDG-JLFENT). The carrier energy quantization on the threshold voltage of a DMDG-JLFENT is modeled, and subsequently, other parameters like drain current were analytically presented. The QME considered here is obtained under the quantum confinement condition for an ultra-thin channel, i.e., below 10 nm of Si thickness. The threshold voltage shift due to QME can be used as a quantum correction term for compact modeling of junctionless transistors. The analytical model proposed for surface potential, threshold voltage, drain current, transconductance, and drain conductance were verified by TCAD 3-D quantum simulation results which makes it suitable for SPICE compact modeling.

2020 ◽  
Vol 65 ◽  
pp. 39-50
Author(s):  
N. Bora ◽  
N. Deka ◽  
R. Subadar

This paper presents an analytical model of various electrical parameters for an ultra thin symmetric double gate (SDG) junctionless field effect nanowire transistor (JLFENT). The model works for all the regions of operation of the nanowire transistor without using any fitting parameter. The surface potential is derived based on the solutions of Poisson’s and current continuity equations by using appropriate boundary conditions. The Pao–Sah double integral was used to obtain the drain current, transconductance and drain conductance. The results obtained from analytical model are validated by comparing with GENIUS 3D TCAD simulations. The simplicity of the model makes it appropriate to be a SPICE compatible model.


2008 ◽  
Vol 47 (4) ◽  
pp. 3189-3192 ◽  
Author(s):  
Chang Bum Park ◽  
Takamichi Yokoyama ◽  
Tomonori Nishimura ◽  
Koji Kita ◽  
Akira Toriumi

Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 573 ◽  
Author(s):  
Hujun Jia ◽  
Mei Hu ◽  
Shunwei Zhu

An improved ultrahigh upper gate 4H-SiC metal semiconductor field effect transistor (IUU-MESFET) is proposed in this paper. The structure is obtained by modifying the ultrahigh upper gate height h of the ultrahigh upper gate 4H-SiC metal semiconductor field effect transistor (UU-MESFET) structure, and the h is 0.1 μm and 0.2 μm for the IUU-MESFET and UU-MESFET, respectively. Compared with the UU-MESFET, the IUU-MESFET structure has a greater threshold voltage and trans-conductance, and smaller breakdown voltage and saturation drain current, and when the ultrahigh upper gate height h is 0.1 μm, the relationship between these parameters is balanced, so as to solve the contradictory relationship that these parameters cannot be improved simultaneously. Therefore, the power added efficiency (PAE) of the IUU-MESFET structure is increased from 60.16% to 70.99% compared with the UU-MESFET, and advanced by 18%.


2013 ◽  
Vol 28 (4) ◽  
pp. 415-421 ◽  
Author(s):  
Milic Pejovic

The gamma-ray irradiation sensitivity to radiation dose range from 0.5 Gy to 5 Gy and post-irradiation annealing at room and elevated temperatures have been studied for p-channel metal-oxide-semiconductor field effect transistors (also known as radiation sensitive field effect transistors or pMOS dosimeters) with gate oxide thicknesses of 400 nm and 1 mm. The gate biases during the irradiation were 0 and 5 V and 5 V during the annealing. The radiation and the post-irradiation sensitivity were followed by measuring the threshold voltage shift, which was determined by using transfer characteristics in saturation and reader circuit characteristics. The dependence of threshold voltage shift DVT on absorbed radiation dose D and annealing time was assessed. The results show that there is a linear dependence between DVT and D during irradiation, so that the sensitivity can be defined as DVT/D for the investigated dose interval. The annealing of irradiated metal-oxide-semiconductor field effect transistors at different temperatures ranging from room temperature up to 150?C was performed to monitor the dosimetric information loss. The results indicated that the dosimeters information is saved up to 600 hours at room temperature, whereas the annealing at 150?C leads to the complete loss of dosimetric information in the same period of time. The mechanisms responsible for the threshold voltage shift during the irradiation and the later annealing have been discussed also.


Sign in / Sign up

Export Citation Format

Share Document