scholarly journals Echolocation reverses information flow in a cortical vocalization network

Author(s):  
Francisco García-Rosales ◽  
Luciana López-Jury ◽  
Eugenia González-Palomarez ◽  
Johannes Wetekam ◽  
Yuranny Cabral-Calderin ◽  
...  

Abstract The mammalian frontal and auditory cortices are fundamental structures supporting vocal behaviour, yet the patterns of information exchange between these regions during vocalization remain unknown. Here, we address this issue by means of electrophysiological recordings in the fronto-auditory network of freely-vocalizing Carollia perspicillata bats. We show that oscillations in frontal and auditory cortices predict vocalization type with complementary patterns across structures. Transfer entropy analyses of oscillatory activity revealed directed information exchange in the circuit, predominantly of top-down nature (frontal to auditory). The dynamics of information flow depended on vocalization type and on the timing relative to vocal onset. Remarkably, we observed the emergence of predominant bottom-up information transfer, only when animals produced calls with imminent post-vocal consequences (echolocation signals). These results unveil changes of information flow in a large-scale sensory and association network associated to the behavioural consequences of vocalization in a highly vocal mammalian model.  

2021 ◽  
Author(s):  
Francisco García-Rosales ◽  
Luciana López-Jury ◽  
Eugenia Gonzalez-Palomares ◽  
Johannes Wetekam ◽  
Yuranny Cabral-Calderín ◽  
...  

AbstractThe mammalian frontal and auditory cortices are fundamental structures supporting vocal production, yet the dynamics of information exchange between these regions during vocalization are unknown. Here, we tackle this issue by means of electrophysiological recordings in the fronto-auditory network of freely-vocalizing Carollia perspicillata bats. We find that oscillations in frontal and auditory cortices provide correlates of vocal production with complementary patterns across structures. Causality analyses of oscillatory activity revealed directed information exchange in the network, predominantly of top-down nature (frontal to auditory). Such directed connectivity was dynamic, as it depended on the type of vocalization produced, and on the timing relative to vocal onset. Remarkably, we observed the emergence of bottom-up information transfer only when bats produced calls with evident post-vocal consequences (echolocation pulses). Our results link vocal production to dynamic information transfer between sensory (auditory) and association areas in a highly vocal mammalian animal model.


2019 ◽  
Vol 116 (25) ◽  
pp. 12506-12515 ◽  
Author(s):  
Mohammad Bagher Khamechian ◽  
Vladislav Kozyrev ◽  
Stefan Treue ◽  
Moein Esghaei ◽  
Mohammad Reza Daliri

Efficient transfer of sensory information to higher (motor or associative) areas in primate visual cortical areas is crucial for transforming sensory input into behavioral actions. Dynamically increasing the level of coordination between single neurons has been suggested as an important contributor to this efficiency. We propose that differences between the functional coordination in different visual pathways might be used to unambiguously identify the source of input to the higher areas, ensuring a proper routing of the information flow. Here we determined the level of coordination between neurons in area MT in macaque visual cortex in a visual attention task via the strength of synchronization between the neurons’ spike timing relative to the phase of oscillatory activities in local field potentials. In contrast to reports on the ventral visual pathway, we observed the synchrony of spikes only in the range of high gamma (180 to 220 Hz), rather than gamma (40 to 70 Hz) (as reported previously) to predict the animal’s reaction speed. This supports a mechanistic role of the phase of high-gamma oscillatory activity in dynamically modulating the efficiency of neuronal information transfer. In addition, for inputs to higher cortical areas converging from the dorsal and ventral pathway, the distinct frequency bands of these inputs can be leveraged to preserve the identity of the input source. In this way source-specific oscillatory activity in primate cortex can serve to establish and maintain “functionally labeled lines” for dynamically adjusting cortical information transfer and multiplexing converging sensory signals.


2019 ◽  
Vol 286 (1895) ◽  
pp. 20182539 ◽  
Author(s):  
Thomas Bochynek ◽  
Martin Burd ◽  
Christoph Kleineidam ◽  
Bernd Meyer

A wide range of group-living animals construct tangible infrastructure networks, often of remarkable size and complexity. In ant colonies, infrastructure construction may require tens of thousands of work hours distributed among many thousand individuals. What are the individual behaviours involved in the construction and what level of complexity in inter-individual interaction is required to organize this effort? We investigate this question in one of the most sophisticated trail builders in the animal world: the leafcutter ants, which remove leaf litter, cut through overhangs and shift soil to level the path of trail networks that may cumulatively extend for kilometres. Based on obstruction experiments in the field and the laboratory, we identify and quantify different individual trail clearing behaviours. Via a computational model, we further investigate the presence of recruitment, which—through direct or indirect information transfer between individuals—is one of the main organizing mechanisms of many collective behaviours in ants. We show that large-scale transport networks can emerge purely from the stochastic process of workers encountering obstructions and subsequently engaging in removal behaviour with a fixed probability. In addition to such incidental removal, we describe a dedicated clearing behaviour in which workers remove additional obstructions independent of chance encounters. We show that to explain the dynamics observed in the experiments, no information exchange (e.g. via recruitment) is required, and propose that large-scale infrastructure construction of this type can be achieved without coordination between individuals.


2021 ◽  
Author(s):  
Nikolaos Karalis ◽  
Anton Sirota

Abstract Network dynamics have been proposed as a mechanistic substrate for the information transfer across cortical and hippocampal circuits. During sleep and offline states, synchronous reactivation across these regions underlies the consolidation of memories. However, little is known about the mechanisms that synchronize and coordinate these processes across widespread brain regions. Here we address the hypothesis that breathing acts as an oscillatory pacemaker, persistently coupling distributed brain circuit dynamics. Using large-scale recordings from seven cortical and subcortical brain regions in quiescent and sleeping mice, we identified a novel global mechanism, termed respiratory corollary discharge, that co-modulates neural activity across these circuits. Analysis of inter-regional population activity and optogenetic perturbations revealed that breathing rhythm couples hippocampal sharp-wave ripples and cortical DOWN/UP state transitions by jointly modulating excitability in these circuits. These results highlight breathing, a perennial brain rhythm, as an oscillatory scaffold for the functional coordination of the limbic circuit, supporting the segregation and integration of information flow across neuronal networks during offline states.


2011 ◽  
Vol 106 (4) ◽  
pp. 2012-2023 ◽  
Author(s):  
Ana V. Cruz ◽  
Nicolas Mallet ◽  
Peter J. Magill ◽  
Peter Brown ◽  
Bruno B. Averbeck

Abnormal oscillatory synchrony is increasingly acknowledged as a pathophysiological hallmark of Parkinson's disease, but what promotes such activity remains unclear. We used novel, nonlinear time series analyses and information theory to capture the effects of dopamine depletion on directed information flow within and between the subthalamic nucleus (STN) and external globus pallidus (GPe). We compared neuronal activity recorded simultaneously from these nuclei in 6-hydroxydopamine-lesioned Parkinsonian rats with that in dopamine-intact control rats. After lesioning, both nuclei displayed pronounced augmentations of beta-frequency (∼20 Hz) oscillations and, critically, information transfer between STN and GPe neurons was increased. Furthermore, temporal profiles of the directed information transfer agreed with the neurochemistry of these nuclei, being “excitatory” from STN to GPe and “inhibitory” from GPe to STN. Separation of the GPe population in lesioned animals into “type-inactive” (GP-TI) and “type-active” (GP-TA) neurons, according to definitive firing preferences, revealed distinct temporal profiles of interaction with STN and each other. The profile of GP-TI neurons suggested their output is of greater causal significance than that of GP-TA neurons for the reduced activity that periodically punctuates the spiking of STN neurons during beta oscillations. Moreover, STN was identified as a key candidate driver for recruiting ensembles of GP-TI neurons but not GP-TA neurons. Short-latency interactions between GP-TI and GP-TA neurons suggested mutual inhibition, which could rhythmically dampen activity and promote anti-phase firing across the two subpopulations. Results thus indicate that information flow around the STN-GPe circuit is exaggerated in Parkinsonism and further define the temporal interactions underpinning this.


2020 ◽  
Vol 132 (4) ◽  
pp. 1234-1242 ◽  
Author(s):  
Paolo Belardinelli ◽  
Ramin Azodi-Avval ◽  
Erick Ortiz ◽  
Georgios Naros ◽  
Florian Grimm ◽  
...  

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for symptomatic Parkinson’s disease (PD); the clinical benefit may not only mirror modulation of local STN activity but also reflect consecutive network effects on cortical oscillatory activity. Moreover, STN-DBS selectively suppresses spatially and spectrally distinct patterns of synchronous oscillatory activity within cortical-subcortical loops. These STN-cortical circuits have been described in PD patients using magnetoencephalography after surgery. This network information, however, is currently not available during surgery to inform the implantation strategy.The authors recorded spontaneous brain activity in 3 awake patients with PD (mean age 67 ± 14 years; mean disease duration 13 ± 7 years) during implantation of DBS electrodes into the STN after overnight withdrawal of dopaminergic medication. Intraoperative propofol was discontinued at least 30 minutes prior to the electrophysiological recordings. The authors used a novel approach for performing simultaneous recordings of STN local field potentials (LFPs) and multichannel electroencephalography (EEG) at rest. Coherent oscillations between LFP and EEG sensors were computed, and subsequent dynamic imaging of coherent sources was performed.The authors identified coherent activity in the upper beta range (21–35 Hz) between the STN and the ipsilateral mesial (pre)motor area. Coherence in the theta range (4–6 Hz) was detected in the ipsilateral prefrontal area.These findings demonstrate the feasibility of detecting frequency-specific and spatially distinct synchronization between the STN and cortex during DBS surgery. Mapping the STN with this technique may disentangle different functional loops relevant for refined targeting during DBS implantation.


Genetics ◽  
1974 ◽  
Vol 76 (2) ◽  
pp. 289-299
Author(s):  
Margaret McCarron ◽  
William Gelbart ◽  
Arthur Chovnick

ABSTRACT A convenient method is described for the intracistronic mapping of genetic sites responsible for electrophoretic variation of a specific protein in Drosophila melanogaster. A number of wild-type isoalleles of the rosy locus have been isolated which are associated with the production of electrophoretically distinguishable xanthine dehydrogenases. Large-scale recombination experiments were carried out involving null enzyme mutants induced on electrophoretically distinct wild-type isoalleles, the genetic basis for which is followed as a nonselective marker in the cross. Additionally, a large-scale recombination experiment was carried out involving null enzyme rosy mutants induced on the same wild-type isoallele. Examination of the electrophoretic character of crossover and convertant products recovered from the latter experiment revealed that all exhibited the same parental electrophoretic character. In addition to documenting the stability of the xanthine dehydrogenase electrophoretic character, this observation argues against a special mutagenesis hypothesis to explain conversions resulting from allele recombination studies.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 708
Author(s):  
Wenbo Liu ◽  
Fei Yan ◽  
Jiyong Zhang ◽  
Tao Deng

The quality of detected lane lines has a great influence on the driving decisions of unmanned vehicles. However, during the process of unmanned vehicle driving, the changes in the driving scene cause much trouble for lane detection algorithms. The unclear and occluded lane lines cannot be clearly detected by most existing lane detection models in many complex driving scenes, such as crowded scene, poor light condition, etc. In view of this, we propose a robust lane detection model using vertical spatial features and contextual driving information in complex driving scenes. The more effective use of contextual information and vertical spatial features enables the proposed model more robust detect unclear and occluded lane lines by two designed blocks: feature merging block and information exchange block. The feature merging block can provide increased contextual information to pass to the subsequent network, which enables the network to learn more feature details to help detect unclear lane lines. The information exchange block is a novel block that combines the advantages of spatial convolution and dilated convolution to enhance the process of information transfer between pixels. The addition of spatial information allows the network to better detect occluded lane lines. Experimental results show that our proposed model can detect lane lines more robustly and precisely than state-of-the-art models in a variety of complex driving scenarios.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 545
Author(s):  
Risabh Mishra ◽  
M Safa ◽  
Aditya Anand

Recent advances in wireless communication technologies and automobile industry have triggered a significant research interest in the field of Internet of Vehicles over the past few years.The advanced period of the Internet of Things is guiding the development of conventional Vehicular Networks to the Internet of Vehicles.In the days of Internet connectivity there is need to be in safe and problem-free environment.The Internet of Vehicles (IoV) is normally a mixing of three networks: an inter-vehicleNetwork, an intra-vehicle network, and a vehicle to vehicle network.Based on  idea of three networks combining into one, we define  Internet of Vehicles as a large-scale distributed system to wireless communication and information exchange between vehicle2X (X: vehicle, road, human and internet).It is a combined   network for supporting intelligent traffic management, intelligent dynamic information service, and intelligent vehicle control, representation of an application of the Internet of Things (IoT) technology for intelligent transportation system (ITS).  


Sign in / Sign up

Export Citation Format

Share Document