scholarly journals The diversity of unique 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid coding common genes and novel Universal stress protein in Ectoine TRAP cluster (UspA) in 32 Halomonas species

Author(s):  
Bhagwan Rekadwad ◽  
Wen-Jun Li ◽  
Rekha PD

Abstract Objectives To decipher the diversity of unique ectoine-coding housekeeping genes in the genus Halomonas.Results In Halomonas, 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid has a crucial role as a stress-tolerant chaperone, a compatible solute, a cell membrane stabilizer, and a reduction in cell damage under stressful conditions. Apart from the current 16S rRNA biomarker, it serves as a blueprint for identifying Halomonas species. Halomonas elongate 1H9 was found to have 11 ectoine-coding genes. The presence of a superfamily of conserved ectoine-coding among members of the genus Halomonas was discovered after genome annotations of 93 Halomonas spp. As a result of the inclusion of 11 single copy ectoine coding genes in 32 Halomonas spp., genome-wide evaluations of ectoine coding genes indicate that 32 Halomonas spp. have a very strong association with Halomonas elongata 1H9, which has been proven evidence-based approach to elucidate phylogenetic relatedness of ectoine-coding child taxa in the genus Halomonas. Total 32 Halomonas species have a single copy number of 11 distinct ectoine-coding genes that help Halomonas spp. produce ectoine under stressful conditions. Furthermore, the existence of the Universal stress protein (UspA) gene suggests that Halomonas species developed directly from primitive bacteria, highlighting the role of Halomonas species in evolutionary terms.

2021 ◽  
Author(s):  
Bhagwan Rekadwad ◽  
Wen-Jun Li ◽  
Rekha PD

Abstract ObjectivesTo decipher the diversity of unique ectoine-coding housekeeping genes in the genus Halomonas.ResultsIn Halomonas, 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid has a crucial role as a stress-tolerant chaperone, a compatible solute, a cell membrane stabilizer, and a reduction in cell damage under stressful conditions. Apart from the current 16S rRNA biomarker, it serves as a blueprint for identifying Halomonas species. Halomonas elongate 1H9 was found to have 11 ectoine-coding genes. The presence of a superfamily of conserved ectoine-coding among members of the genus Halomonas was discovered after genome annotations of 93 Halomonas spp. As a result of the inclusion of 11 single copy ectoine coding genes in 32 Halomonas spp., genome-wide evaluations of ectoine coding genes indicate that 32 Halomonas spp. have a very strong association with Halomonas elongata 1H9, which has been proven evidence-based approach to elucidate phylogenetic relatedness of ectoine-coding child taxa in the genus Halomonas. Total 32 Halomonas species have a single copy number of 11 distinct ectoine-coding genes that help Halomonas spp., that produce ectoine under stressful conditions. Furthermore, the existence of the Universal stress protein (UspA) gene suggests that Halomonas species developed directly from primitive bacteria, highlighting the role of Halomonas species in evolutionary terms.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Bhagwan Narayan Rekadwad ◽  
Wen-Jun Li ◽  
P. D. Rekha

Abstract Objectives To decipher the diversity of unique ectoine-coding housekeeping genes in the genus Halomonas. Results In Halomonas, 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid has a crucial role as a stress-tolerant chaperone, a compatible solute, a cell membrane stabilizer, and a reduction in cell damage under stressful conditions. Apart from the current 16S rRNA biomarker, it serves as a blueprint for identifying Halomonas species. Halomonas elongata 1H9 was found to have 11 ectoine-coding genes. The presence of a superfamily of conserved ectoine-coding among members of the genus Halomonas was discovered after genome annotations of 93 Halomonas spp. As a result of the inclusion of 11 single copy ectoine coding genes in 32 Halomonas spp., genome-wide evaluations of ectoine coding genes indicate that 32 Halomonas spp. have a very strong association with H. elongata 1H9, which has been proven evidence-based approach to elucidate phylogenetic relatedness of ectoine-coding child taxa in the genus Halomonas. Total 32 Halomonas species have a single copy number of 11 distinct ectoine-coding genes that help Halomonas spp., produce ectoine under stressful conditions. Furthermore, the existence of the Universal stress protein (UspA) gene suggests that Halomonas species developed directly from primitive bacteria, highlighting its role during the progression of microbial evolution.


Planta ◽  
2021 ◽  
Vol 253 (4) ◽  
Author(s):  
Mingzhao Zhu ◽  
Shujin Lu ◽  
Mu Zhuang ◽  
Yangyong Zhang ◽  
Honghao Lv ◽  
...  

Abstract Main conclusion Chitinase family genes were involved in the response of Brassica oleracea to Fusarium wilt, powdery mildew, black spot and downy mildew. Abstract Abstract Chitinase, a category of pathogenesis-related proteins, is believed to play an important role in defending against external stress in plants. However, a comprehensive analysis of the chitin-binding gene family has not been reported to date in cabbage (Brassica oleracea L.), especially regarding the roles that chitinases play in response to various diseases. In this study, a total of 20 chitinase genes were identified using a genome-wide search method. Phylogenetic analysis was employed to classify these genes into two groups. The genes were distributed unevenly across six chromosomes in cabbage, and all of them contained few introns (≤ 2). The results of collinear analysis showed that the cabbage genome contained 1–5 copies of each chitinase gene (excluding Bol035470) identified in Arabidopsis. The heatmap of the chitinase gene family showed that these genes were expressed in various tissues and organs. Two genes (Bol023322 and Bol041024) were relatively highly expressed in all of the investigated tissues under normal conditions, exhibiting the expression characteristics of housekeeping genes. In addition, under four different stresses, namely, Fusarium wilt, powdery mildew, black spot and downy mildew, we detected 9, 5, 8 and 8 genes with different expression levels in different treatments, respectively. Our results may help to elucidate the roles played by chitinases in the responses of host plants to various diseases.


2021 ◽  
Vol 9 (8) ◽  
pp. 1621
Author(s):  
Adeline Ribeiro E Silva ◽  
Alix Sausset ◽  
Françoise I. Bussière ◽  
Fabrice Laurent ◽  
Sonia Lacroix-Lamandé ◽  
...  

Kinome from apicomplexan parasites is composed of eukaryotic protein kinases and Apicomplexa specific kinases, such as rhoptry kinases (ROPK). Ropk is a gene family that is known to play important roles in host–pathogen interaction in Toxoplasma gondii but is still poorly described in Eimeria tenella, the parasite responsible for avian coccidiosis worldwide. In the E. tenella genome, 28 ropk genes are predicted and could be classified as active (n = 7), inactive (incomplete catalytic triad, n = 12), and non-canonical kinases (active kinase with a modified catalytic triad, n = 9). We characterized the ropk gene expression patterns by real-time quantitative RT-PCR, normalized by parasite housekeeping genes, during the E. tenella life-cycle. Analyzed stages were: non-sporulated oocysts, sporulated oocysts, extracellular and intracellular sporozoites, immature and mature schizonts I, first- and second-generation merozoites, and gametes. Transcription of all those predicted ropk was confirmed. The mean intensity of transcription was higher in extracellular stages and 7–9 ropk were specifically transcribed in merozoites in comparison with sporozoites. Transcriptional profiles of intracellular stages were closely related to each other, suggesting a probable common role of ROPKs in hijacking signaling pathways and immune responses in infected cells. These results provide a solid basis for future functional analysis of ROPK from E. tenella.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Rowena DeJesus ◽  
Francesca Moretti ◽  
Gregory McAllister ◽  
Zuncai Wang ◽  
Phil Bergman ◽  
...  

SQSTM1 is an adaptor protein that integrates multiple cellular signaling pathways and whose expression is tightly regulated at the transcriptional and post-translational level. Here, we describe a forward genetic screening paradigm exploiting CRISPR-mediated genome editing coupled to a cell selection step by FACS to identify regulators of SQSTM1. Through systematic comparison of pooled libraries, we show that CRISPR is superior to RNAi in identifying known SQSTM1 modulators. A genome-wide CRISPR screen exposed MTOR signalling and the entire macroautophagy machinery as key regulators of SQSTM1 and identified several novel modulators including HNRNPM, SLC39A14, SRRD, PGK1 and the ufmylation cascade. We show that ufmylation regulates SQSTM1 by eliciting a cell type-specific ER stress response which induces SQSTM1 expression and results in its accumulation in the cytosol. This study validates pooled CRISPR screening as a powerful method to map the repertoire of cellular pathways that regulate the fate of an individual target protein.


2022 ◽  
Vol 23 (2) ◽  
pp. 614
Author(s):  
Weiqi Sun ◽  
Mengdi Li ◽  
Jianbo Wang

Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are suitable for studying the problems associated with polyploidization. As an important anti-stress protein, RCI2 proteins widely exist in various tissues of plants, and are crucial to plant growth, development, and stress response. In this study, the RCI2 gene family was comprehensively identified and analyzed, and 9, 9, and 24 RCI2 genes were identified in B. rapa, B. oleracea, and B. napus, respectively. Phylogenetic analysis showed that all of the identified RCI2 genes were divided into two groups, and further divided into three subgroups. Ka/Ks analysis showed that most of the identified RCI2 genes underwent a purifying selection after the duplication events. Moreover, gene structure analysis showed that the structure of RCI2 genes is largely conserved during polyploidization. The promoters of the RCI2 genes in B. napus contained more cis-acting elements, which were mainly involved in plant development and growth, plant hormone response, and stress responses. Thus, B. napus might have potential advantages in some biological aspects. In addition, the changes of RCI2 genes during polyploidization were also discussed from the aspects of gene number, gene structure, gene relative location, and gene expression, which can provide reference for future polyploidization analysis.


2017 ◽  
Vol 3 (2) ◽  
pp. 38 ◽  
Author(s):  
Vladislava Milchevskaya ◽  
Grischa Tödt ◽  
Toby James Gibson

Genome-wide expression profiling and genotyping is widely applied in functional genomics research, ranging from stem cell studies to cancer, in drug response studies, and in clinical diagnostics. The Affymetrix GeneChip microarrays represent the most popular platform for such assays. Nevertheless, due to rapid and continuous improvement of the knowledge about the genome, the definition of many of the genes and transcripts change, and new genes are discovered. Thus the original probe information is out-dated for a number of Affymetrix platforms, and needs to be re-defined. It has been demonstrated, that accurate probe set definition improves both coverage of the gene expression analysis and its statistical power. Therefore we developed a method that incorporates the most recent genome annotations into the annotation of the microarray probe sets, using tools from the next generation sequencing. Additionally our method allows to quickly build project specific gene annotation models, as well as for comparison of microarray to RNAseq data.


Author(s):  
Suresh Kumar

Genome-wide epigenetic changes in plants are being reported during the development and environmental stresses, which are often correlated with gene expression at the transcriptional level. Sum total of the biochemical changes in nuclear DNA, post-translational modifications in histone proteins and variations in the biogenesis of non-coding RNAs in a cell is known as epigenome. These changes are often responsible for variation in expression of the gene without any change in the underlying nucleotide sequence. The changes might also cause variation in chromatin structure resulting into the changes in function/activity of the genome. The epigenomic changes are dynamic with respect to the endogenous and/or environmental stimuli which affect phenotypic plasticity of the organism. Both, the epigenetic changes and variation in gene expression might return to the pre-stress state soon after withdrawal of the stress. However, a part of the epigenetic changes may be retained which is reported to play role in acclimatization, adaptation as well as in the evolutionary processes. Understanding epigenome-engineering for improved stress tolerance in plants has become essential for better utilization of the genetic factors. This review delineates the importance of epigenomics towards possible improvement of plant’s responses to environmental stresses for climate resilient agriculture.


Sign in / Sign up

Export Citation Format

Share Document