scholarly journals Tribological and Machinability Performance of Hybrid Al2O3 -MWCNTs MQL for Milling Ti-6Al-4V

Author(s):  
Muhammad Jamil ◽  
Ning He ◽  
Wei Zhao ◽  
Aqib Mashood Khan ◽  
Munish Kumar Gupta

Abstract Recent burgeoning development in nanotechnology unfold an avenue in the manufacturing industry. Owing to the superior heat transfer potential of nanoadditives mentioned recently, it could be interesting to improve the heat transfer and tribological capability of metal cutting fluids by mixing nanofluids in emulsions properly. In order to attain high-performance cutting of difficult-to-cut alloys, hybrid nanofluids assisted Minimum Quantity Lubrication (MQL) system is applied with the anticipation of efficient lubrication and heat transfer. Taguchi based L16(43) orthogonal array is used involving nanofluids concentrations of alumina-multiwalled carbon nanotubes (Al2O3-MWCNTs) air pressure and cooling flow rate at constant cutting conditions in the milling of Ti-6Al-4V. The resultant cutting force (FR), cutting temperature (T), and surface roughness (Ra) is considered as key machining responses. Besides, tool wear, chip analysis, and surface topography are also analyzed under the effect of hybrid nanofluids. Findings have shown the minimum resultant force, cutting temperature and surface roughness of 24.3N, 148.7oC, and 0.67µm respectively at nanofluids concentration of 0.24vol%, 120ml/h of flow rate at 0.6MPa of air pressure. The microscopic analysis of the end-mill depicted minor thermal damage, chip-welding, and coating peeling. Also, chip analysis depicts the clean back surface and less melting of saw-tooth chip edges. The surface topography confirms the less micro-adhesion of chips and material debris. The summary showed that appropriately chosen MQL parameters have improved the lubrication/cooling performance by providing oil film and enhancing the milling performance measures. The outcomes of the proposed study are useful for the manufacturing industry for the enhancement of process performance.

2021 ◽  
pp. 2150058
Author(s):  
HOOMAN ABIYARI ◽  
MOHAMMAD MAHDI ABOOTORABI

Machining with minimum quantity lubrication (MQL) or minimum quantity cooling (MQC) as a subset of green machining is a process in which small volume fluid of high lubrication and cooling properties alongside high pressure air is used in the material removal process. The heat generated in the grinding process has a great impact upon the workpiece quality. Serving lubrication and heat transfer functions, cutting fluids have an essential role in reducing the temperature and thus improving the process of grinding. In this research, nanofluid made of graphene nanoparticles in water-based fluid as a cutting fluid of high heat transfer is utilized to investigate the effects of nozzle number and nozzle geometry of the MQC system on the cutting temperature and surface roughness of the workpiece. The effect of geometry and number of nozzles on grinding with MQC has not been studied so far. The study findings show that the nozzle outlet cross-section of rectangular, compared to circular, decreases the surface roughness and temperature by 30% and 36%, respectively. Moreover, compared to the single nozzle, the use of three nozzles results in a decrease of 19% and 31.7% in the surface roughness and temperature. Under the same machining conditions, the MQC method by 0.15[Formula: see text]wt.% nanofluid of graphene in water using a rectangular nozzle outlet of 1.2[Formula: see text]mm width makes surface roughness and temperature reduced by 67.2% and 48.3% compared to the dry condition, whereas decreased by 13.4% and 8.8% compared to the wet method, respectively.


Fluids ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 248
Author(s):  
Tran Minh Duc ◽  
Tran The Long ◽  
Ngo Minh Tuan

Machining difficult-to-cut materials is one of the increasingly concerned issues in the metalworking industry. Low machinability and high cutting temperature generated from the contact zone are the main obstacles that need to be solved in order to improve economic and technical efficiency but still have to ensure environmental friendliness. The application of MQL method using nano cutting fluid is one of the suggested solutions to improve the cooling and lubricating performance of pure-MQL for machining difficult-to-cut materials. The main objective of this paper is to investigate the effects of nanofluid MQL (NFMQL) parameters including the fluid type, type of nanoparticles, air pressure and air flow rate on cutting forces and surface roughness in hard milling of 60Si2Mn hardened steel (50–52 HRC). Analysis of variance (ANOVA) was implemented to study the effects of investigated variables on hard machining performance. The most outstanding finding is that the main effects of the input variables and their interaction are deeply investigated to prove the better machinability and the superior cooling lubrication performance when machining under NFMQL condition. The experimental results indicate that the uses of smaller air pressure and higher air flow rate decrease the cutting forces and improve the surface quality. Al2O3 nanoparticles show the better results than MoS2 nanosheets. The applicability of soybean oil, a type of vegetable oil, is proven to be enlarged in hard milling by suspending nanoparticles, suitable for further studies in the field of sustainable manufacturing.


Author(s):  
Changxue Xu ◽  
Yong Huang ◽  
Yafu Lin

Thin films have been finding more and more applications in electronics, optical devices, and energy conversion and storage devices, to name a few. As one of the most promising thin film deposition techniques, air atomizing spray pyrolysis, which uses compressed air to disrupt the liquid stream into droplets, has been favored in scientific and engineering communities. However, the effects of operating conditions such as liquid flow rate, atomizing air pressure, fan air pressure, and air gap on the geometric properties of deposited thin film are still not systematically studied. The objective of this study is to experimentally investigate the effects of air spraying operating conditions on the surface roughness and thickness of deposited zinc oxide (ZnO) thin film. It is found 1) The surface roughness increases with the liquid flow rate, but decreases with the atomizing air pressure, fan air pressure, and air gap; 2) The surface roughness decreases along both the X and Y directions under any given operating condition; 3) The thickness increases with the liquid flow rate and the atomizing air pressure, but decreases with the fan air pressure and the air gap; and 4) The thickness generally changes differently along the X and Y directions. Along the X direction, it decreases monotonically; however, along the Y direction, it increases first then decreases as in a saddle shape. While ZnO film deposition is studied, it is expected that the above conclusions may be applicable in air spraying other materials.


Author(s):  
Mahesh Muley

Abstract: The manufacturing industry is changing very drastically in all the aspect regarding the manufacturing technology as well as the quality concern as per as the quality is considered. Quality is becoming a significant trend in todays growing automobile industry. In the field of metal cutting operations, the surface roughness is becoming more dominant parameter as per as the quality of the component is considered. Electrical discharge machining is becoming a most powerful non conventional machining which is being widely used in the field of machining. Most specifically our work was conducted on the electrical discharge wire cut machining for achieving the desired surface roughness (Ra) and adequate material removal rate (MRR). The input parameter for our research work were selected as Peak current, pulse on time & pulse off time while the output parameter was selected as MRR and the surface roughness. Aluminum 6082 Grade material is used as a specimen and the research methodology implemented for the research work is taguchi and Anova. Keywords: Wire cut EDM, Taguchi, MRR surface roughness, Anova.


2011 ◽  
Vol 181-182 ◽  
pp. 1013-1017
Author(s):  
Ru Ting Xia

The present study show that metal cutting fluids changes the machinability because of their lubrication and cooling in turning 1Cr18Ni9Ti steel under minimum quantity lubrication (MQL) Machining. The experiments compares the mechanical performance of MQL to completely dry lubrication for the turning of 1Cr18Ni9Ti steel based on experimental measurement of cutting temperature, cutting forces, surface roughness, and dimensional deviation. Results indicated that the use of near dry lubrication leads to lower cutting temperature and cutting force, favorable chip-tool interaction, reduced tool wears, surface roughness, and dimensional deviation.


2013 ◽  
Vol 4 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Zs. Kun ◽  
I. G. Gyurika

Abstract The stone products with different sizes, geometries and materials — like machine tool's bench, measuring machine's board or sculptures, floor tiles — can be produced automatically while the manufacturing engineer uses objective function similar to metal cutting. This function can minimise the manufacturing time or the manufacturing cost, in other cases it can maximise of the tool's life. To use several functions, manufacturing engineers need an overall theoretical background knowledge, which can give useful information about the choosing of technological parameters (e.g. feed rate, depth of cut, or cutting speed), the choosing of applicable tools or especially the choosing of the optimum motion path. A similarly important customer's requirement is the appropriate surface roughness of the machined (cut, sawn or milled) stone product. This paper's first part is about a five-month-long literature review, which summarizes in short the studies (researches and results) considered the most important by the authors. These works are about the investigation of the surface roughness of stone products in stone machining. In the second part of this paper the authors try to determine research possibilities and trends, which can help to specify the relation between the surface roughness and technological parameters. Most of the suggestions of this paper are about stone milling, which is the least investigated machining method in the world.


Sign in / Sign up

Export Citation Format

Share Document