scholarly journals Curcumin Ameliorates Chronic Mild Stress-Induced Depressive-Like Behavior via HMGB1/TLR4/NF-κB Signaling Pathway

Author(s):  
Li Miao ◽  
Fei Huang ◽  
Wei Jiang ◽  
Ying-ying Sun ◽  
Yong-jin Chen ◽  
...  

Abstract BackgroundDepression, one of the most frequently-occurring psychiatric disorders worldwide, is a significant inflammatory disorder. The polyphenol curcumin (Cur), which is extracted from Curcuma longa, has marked anti-inflammatory and anti‑oxidative effects against inflammatory diseases. However, whether Cur has antidepressant effects and the possible mechanisms, are unclear. The present study aimed to assess Cur’s beneficial effects on depressive-like behaviors using a chronic unpredictable mild stress (CUMS) model and its possible molecular mechanisms. MethodsWe performed CUMS treated Sprague Dawley (SD) rats as a model of depression. Behavioral observations were performed by sucrose preference test (SPT), force swimming test (FST) and tail suspension test (TST). Hippocampal expression of oxidative stress markers and inflammatory cytokines were measured with ELISA. Hippocampal expression of high-mobility group box 1 (HMGB1), IL-1β, TNF-α and IL-6 were determined with quantitative PCR analyses and immunofluorescent staining. Hippocampal Toll-like receptor 4 (TLR4) and NF-κB activation were examined with Western blotting analysis.ResultsRats subjected to CUMS demonstrated marked depressive-like behavior (decreased locomotor activity and sucrose intake, and prolonged immobility). Their levels of oxidative stress and inflammatory cytokines increased significantly, and their levels of phosphorylated nuclear factor kappa-B (NF-κB), toll-like receptor 4 (TLR4), and HMGB1, also increased in the hippocampus. The changes were ameliorated significantly by treatment with Cur (50, 100 mg/kg) to varying degrees.Conclusion This study demonstrated that Cur has a potent antidepressant effect via the HMGB1/TLR4/NF-κB pathway, suggesting that Cur might be a promising therapeutic drug for depression.

2020 ◽  
Vol 9 (9) ◽  
pp. 939-945
Author(s):  
Ling Zhou ◽  
Ruixue Zhang ◽  
Shuangyan Yang ◽  
Yaguang Zhang ◽  
Dandan Shi

Background: Our previous study revealed that astragaloside IV (AS-IV) effectively improved gestational diabetes mellitus (GDM) by reducing hepatic gluconeogenesis. Due to the importance of placental oxidative stress, we further explored the protective role of AS-IV on placental oxidative stress in GDM. Methods: First, non-pregnant mice were orally administrated with AS-IV to evaluate its safety and effect. Then GDM mice were orally administered with AS-IV for 20 days and its effect on the symptoms of GDM, placental oxidative stress, secretions of inflammatory cytokines, as well as toll-like receptor 4 (TLR4)/NF-κB signaling pathway, were evaluated. Results: AS-IV had no adverse effect on non-pregnant mice. On the other hand, AS-IV significantly attenuated the GDM-induced hyperglycemia, glucose intolerance, insulin resistance, placental oxidative stress, productions of inflammatory cytokines and the activation of TLR4/NF-κB pathway. Conclusion: AS-IV effectively protected against GDM by alleviating placental oxidative stress and inflammation, in which TLR4/NF-κB might be involved.


Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 110
Author(s):  
Brisamar Estébanez ◽  
Alexandra L. Rodriguez ◽  
Nishant P. Visavadiya ◽  
Michael Whitehurst ◽  
María J. Cuevas ◽  
...  

Reactive oxygen and nitrogen species-mediated cellular aging has been linked to diseases such as atherothrombosis and cancer. Although pentraxin 3 (PTX3) is associated with aging-related diseases via TLR4-dependent anti-inflammatory effects, its relationship with oxidative stress in aging remains to be elucidated. Exercise is proposed as the key intervention for health maintenance in the elderly. This study aimed to examine the association of PTX3 levels with changes in oxidative stress in both plasma and peripheral blood mononuclear cells (PBMCs), following aerobic training in elderly adults. Nine trained and five controls participated in an eight-week aerobic training protocol. Enzyme-linked immunosorbent assay (ELISA) and Western blot analyses were used to determine PTX3, toll-like receptor 4 (TLR4), and levels of oxidative stress biomarkers [3-nitrotyrosine (3NT), 4-hydroxynonenal (4-HNE), glutathione (GSH), protein carbonyl (PC), reactive oxygen/ nitrogen species (ROS/RNS), and trolox equivalent antioxidant capacity (TEAC)] in plasma and/or PBMCs. Results showed a down-regulation of PTX3 expression in PBMCs following aerobic training, along with decreased PTX3/TLR4 ratios. Oxidative stress responses in PBMCs remained unchanged with the exercise protocol. Comparable levels of plasma PTX3 and oxidative stress biomarkers were observed in trained vs. control groups. No correlation was found between PTX3 and any oxidative stress biomarkers following training. These findings demonstrated the down-regulation of PTX3 and PTX3/TLR4 ratio, irrespective of oxidative stress response, in elderly adults following eight weeks of aerobic training.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xiangguo Duan ◽  
Yaru Lan ◽  
Xiaoyu Zhang ◽  
Shaozhang Hou ◽  
Jian Chen ◽  
...  

In previous studies, Lycium barbarum polysaccharides (LBP), a traditional Chinese medicine, can promote immature dendritic cells (DCs) to mature. However, the molecular mechanisms by which LBP works are not yet elucidated. Here, we found that LBP can induce DCs maturation, which is mainly characterized by the upregulation of MHCII and costimulatory molecules (CD80, CD86), and increase the production of IL-6 and IL-4. Furthermore, we found that LBP could increase the mRNA and protein expression of TLR4, p38, Erk1/2, JNK, and Blimp1 signal molecules. More interestingly, after blocking by Toll-like receptor 4 inhibitor, Resatorvid (TAK 242), the mRNA and protein expression of TLR4, Erk1/2, and Blimp1 was significantly decreased while the expression of p38 and JNK has not changed. Then, we found that after blocking by p38 inhibitor (SB203580), Erk inhibitor (PD98059), and JNK inhibitor (SP603580) separately, Blimp1 protein expression was significantly reduced; after downregulating Blimp1 by Blimp1-siRNA, the production of IL-6 was reduced. In conclusion, our results indicate that LBP can induce maturation of DCs through the TLR4-Erk1/2-Blimp1 signal pathway instead of the JNK/p38-Blimp1 pathway. Our findings may provide a novel evidence for understanding the molecular mechanisms of LBP on activating murine DCs.


2019 ◽  
Vol 109 (7) ◽  
pp. 1417-1422 ◽  
Author(s):  
Matti Korppi ◽  
Johanna Teräsjärvi ◽  
Eero Lauhkonen ◽  
Heini Huhtala ◽  
Kirsi Nuolivirta ◽  
...  

2020 ◽  
Vol 7 ◽  
Author(s):  
Zheng Xiao ◽  
Bin Kong ◽  
Hongjie Yang ◽  
Chang Dai ◽  
Jin Fang ◽  
...  

Toll-like receptor 4 (TLR4), a key pattern recognition receptor, initiates the innate immune response and leads to chronic and acute inflammation. In the past decades, accumulating evidence has implicated TLR4-mediated inflammatory response in regulation of myocardium hypertrophic remodeling, indicating that regulation of the TLR4 signaling pathway may be an effective strategy for managing cardiac hypertrophy's pathophysiology. Given TLR4's significance, it is imperative to review the molecular mechanisms and roles underlying TLR4 signaling in cardiac hypertrophy. Here, we comprehensively review the current knowledge of TLR4-mediated inflammatory response and its interaction ligands and co-receptors, as well as activation of various intracellular signaling. We also describe the associated roles in promoting immune cell infiltration and inflammatory mediator secretion, that ultimately cause cardiac hypertrophy. Finally, we provide examples of some of the most promising drugs and new technologies that have the potential to attenuate TLR4-mediated inflammatory response and prevent or reverse the ominous cardiac hypertrophy outcomes.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1665 ◽  
Author(s):  
Rui Liu ◽  
Qi-He Chen ◽  
Jin-Wei Ren ◽  
Bin Sun ◽  
Xia-Xia Cai ◽  
...  

Panax ginseng C.A. Meyer (ginseng) is an edible and traditional medicinal herb, which is reported to have a wide range of biological activity and pharmaceutical properties. There were more studies on ginsenoside and polysaccharides, but fewer on ginseng oligopeptides (GOPs), which are small molecule oligopeptides extracted from ginseng. The present study was designed to investigate the effects and underlying mechanism of ginseng oligopeptide (GOPs) on binge drinking-induced alcohol damage in rats. Sprague Dawley rats were randomly assigned to six groups (n = 10), rats in normal control group and alcohol model group was administered distilled water; rats in four GOPs intervention groups (at a dose of 0.0625, 0.125, 0.25, 0.5 g/kg of body weight, respectively) were administered GOPs once a day for 30 days. Experiment rats were intragastrically administered ethanol at a one-time dose of 7 g/kg of body weight after 30 days. The liver injury was measured through traditional liver enzymes, inflammatory cytokines, expression of oxidative stress markers, and histopathological examination. We found that the GOPs treatment could significantly improve serum alanine aminotransferase and aspartate aminotransferase, plasma lipopolysaccharide, and inflammatory cytokine levels, as well as the oxidative stress markers that were altered by alcohol. Moreover, GOPs treatment inhibited the protein expression of toll-like receptor 4, and repressed the inhibitor kappa Bα and nuclear factor-κB p65 in the liver. These findings suggested that GOPs have a significant protective effect on binge drinking-induced liver injury, and the mechanism possibly mediated by the partial inhibition of lipopolysaccharide—toll-like receptor 4-nuclear factor-κB p65 signaling in the liver.


Sign in / Sign up

Export Citation Format

Share Document