Single-Molecule Long-Read Sequencing Facilitates Transcriptomic Research For Whitmania Pigra, The Most Utilized Medical Leech In Chinese Traditional Medicine For Anticoagulant Therapy

Author(s):  
Jing Song ◽  
Ping Li ◽  
De-Long Guan ◽  
Yan Sun

Abstract Although leeches are of great medical and economic value in anticoagulant therapy, full-length transcriptomes for leeches remain scarce. Here, we generated the first full-length transcriptome for the paddy leech Whitmania pigra (the most widely utilized medical leech in Chinese traditional medicine) through Pacific Biosciences (Pacbio) single-molecule long-read sequencing. A total of 191,676 full-length non-chimeric (FLNC) reads were obtained, 30,660 were high-quality unique full-length transcripts. The BUSCO (Bench-marking Universal Single-Copy Orthologues) accession of completeness demonstrated that 74.8% of BUSCOs were complete. We functionally annotated 28,144 transcripts were in public databases, including NR, gene ontology (GO), Pfam, etc. Furthermore, 1,314 long non-coding RNAs (LncRNAs), 2,574 alternative splicing (AS) events, 932 transcript factors (TFs), and 33,258 simple sequence repeats (SSRs) we identified across all transcripts. From the generated data, a total of 426 anticoagulant genes, including 122 Antistasins, 124 with the Fibrinogen beta and gamma chains, and 62 Kazal-type serine protease inhibitors were screened out. Twenty-five novel proteins were revealed following the evaluation of the annotations and products of these anticoagulant transcripts. The regulation network between LncRNAs and corresponding coding transcripts was found with the typical mang-to-many pattern, especially obvious in a specific type of protein, Guamerin. Collectively, the present findings provide a rich set of full-length cDNA sequences for W. pigra, which will greatly facilitate research on transcriptomic genetic for this species and leeches.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7933 ◽  
Author(s):  
Na Ding ◽  
Huihui Cui ◽  
Ying Miao ◽  
Jun Tang ◽  
Qinghe Cao ◽  
...  

Background Sweet potato (Ipomoea batatas (L.) Lam.) is one of the most important crops in many developing countries and provides a candidate source of bioenergy. However, neither a complete reference genome nor large-scale full-length cDNA sequences for this outcrossing hexaploid crop are available, which in turn impedes progress in research studies in I. batatas functional genomics and molecular breeding. Methods In this study, we sequenced full-length transcriptomes in I. batatas and its diploid ancestor I. trifida by single-molecule real-time sequencing and Illumina second-generation sequencing technologies. With the generated datasets, we conducted comprehensive intraspecific and interspecific sequence analyses and experimental characterization. Results A total of 53,861/51,184 high-quality long-read transcripts were obtained, which covered about 10,439/10,452 loci in the I. batatas/I. trifida genome. These datasets enabled us to predict open reading frames successfully in 96.83%/96.82% of transcripts and identify 34,963/33,637 full-length cDNA sequences, 1,401/1,457 transcription factors, 25,315/27,090 simple sequence repeats, 1,656/1,389 long non-coding RNAs, and 5,251/8,901 alternative splicing events. Approximately, 32.34%/38.54% of transcripts and 46.22%/51.18% multi-exon transcripts underwent alternative splicing in I. batatas/I. trifida. Moreover, we validated one alternative splicing event in each of 10 genes and identified tuberous-root-specific expressed isoforms from a starch-branching enzyme, an alpha-glucan phosphorylase, a neutral invertase, and several ABC transporters. Overall, the collection and analysis of large-scale long-read transcripts generated in this study will serve as a valuable resource for the I. batatas research community, which may accelerate the progress in its structural, functional, and comparative genomics studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fiza Liaquat ◽  
Muhammad Farooq Hussain Munis ◽  
Samiah Arif ◽  
Urooj Haroon ◽  
Jianxin Shi ◽  
...  

Schima superba (Theaceae) is a subtropical evergreen tree and is used widely for forest firebreaks and gardening. It is a plant that tolerates salt and typically accumulates elevated amounts of manganese in the leaves. With large ecological amplitude, this tree species grows quickly. Due to its substantial biomass, it has a great potential for soil remediation. To evaluate the thorough framework of the mRNA, we employed PacBio sequencing technology for the first time to generate S. Superba transcriptome. In this analysis, overall, 511,759 full length non-chimeric reads were acquired, and 163,834 high-quality full-length reads were obtained. Overall, 93,362 open reading frames were obtained, of which 78,255 were complete. In gene annotation analyses, the Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Genes (COG), Gene Ontology (GO), and Non-Redundant (Nr) databases were allocated 91,082, 71,839, 38,914, and 38,376 transcripts, respectively. To identify long non-coding RNAs (lncRNAs), we utilized four computational methods associated with protein families (Pfam), Cooperative Data Classification (CPC), Coding Assessing Potential Tool (CPAT), and Coding Non-Coding Index (CNCI) databases and observed 8,551, 9,174, 20,720, and 18,669 lncRNAs, respectively. Moreover, nine genes were randomly selected for the expression analysis, which showed the highest expression of Gene 6 (Na_Ca_ex gene), and CAX (CAX-interacting protein 4) was higher in manganese (Mn)-treated group. This work provided significant number of full-length transcripts and refined the annotation of the reference genome, which will ease advanced genetic analyses of S. superba.


2019 ◽  
Vol 20 (24) ◽  
pp. 6350 ◽  
Author(s):  
Nan Deng ◽  
Chen Hou ◽  
Fengfeng Ma ◽  
Caixia Liu ◽  
Yuxin Tian

The limitations of RNA sequencing make it difficult to accurately predict alternative splicing (AS) and alternative polyadenylation (APA) events and long non-coding RNAs (lncRNAs), all of which reveal transcriptomic diversity and the complexity of gene regulation. Gnetum, a genus with ambiguous phylogenetic placement in seed plants, has a distinct stomatal structure and photosynthetic characteristics. In this study, a full-length transcriptome of Gnetum luofuense leaves at different developmental stages was sequenced with the latest PacBio Sequel platform. After correction by short reads generated by Illumina RNA-Seq, 80,496 full-length transcripts were obtained, of which 5269 reads were identified as isoforms of novel genes. Additionally, 1660 lncRNAs and 12,998 AS events were detected. In total, 5647 genes in the G. luofuense leaves had APA featured by at least one poly(A) site. Moreover, 67 and 30 genes from the bHLH gene family, which play an important role in stomatal development and photosynthesis, were identified from the G. luofuense genome and leaf transcripts, respectively. This leaf transcriptome supplements the reference genome of G. luofuense, and the AS events and lncRNAs detected provide valuable resources for future studies of investigating low photosynthetic capacity of Gnetum.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 866
Author(s):  
Lei Kan ◽  
Qicong Liao ◽  
Zhiyao Su ◽  
Yushan Tan ◽  
Shuyu Wang ◽  
...  

Madhuca pasquieri (Dubard) Lam. is a tree on the International Union for Conservation of Nature Red List and a national key protected wild plant (II) of China, known for its seed oil and timber. However, lacking of genomic and transcriptome data for this species hampers study of its reproduction, utilization, and conservation. Here, single-molecule long-read sequencing (PacBio) and next-generation sequencing (Illumina) were combined to obtain the transcriptome from five developmental stages of M. pasquieri. Overall, 25,339 transcript isoforms were detected by PacBio, including 24,492 coding sequences (CDSs), 9440 simple sequence repeats (SSRs), 149 long non-coding RNAs (lncRNAs), and 182 alternative splicing (AS) events, a majority was retained intron (RI). A further 1058 transcripts were identified as transcriptional factors (TFs) from 51 TF families. PacBio recovered more full-length transcript isoforms with a longer length, and a higher expression level, whereas larger number of transcripts (124,405) was captured in de novo from Illumina. Using Nr, Swissprot, KOG, and KEGG databases, 24,405 transcripts (96.31%) were annotated by PacBio. Functional annotation revealed a role for the auxin, abscisic acid, gibberellin, and cytokinine metabolic pathways in seed germination and post-germination. These findings support further studies on seed germination mechanism and genome of M. pasquieri, and better protection of this endangered species.


2019 ◽  
Author(s):  
Bo Wang ◽  
Elizabeth Tseng ◽  
Primo Baybayan ◽  
Kevin Eng ◽  
Michael Regulski ◽  
...  

AbstractHaplotype phasing of genetic variants in maize is important for interpretation of the genome, population genetic analysis and functional genomic analysis of allelic activity. Accordingly, accurate methods for phasing the full-length isoforms are essential for functional genomics studies. We performed an isoform-level phasing study in maize, using two inbred lines and their reciprocal crosses, based on the single-molecule full-length cDNA sequencing. To phase and analyze the full-length transcripts between hybrids and parents, we developed a tool called IsoPhase. Using this tool, we validated the majority of SNPs called against matching short-read data and identified cases of allele-specific, gene-level and isoform-level expression. Our results revealed that maize parental lines and hybrid lines exhibit different splicing activities. After phasing 6,907 genes in two reciprocal hybrids using embryo, endosperm and root tissues, we annotated the SNPs and identified large-effect genes. In addition, based on single-molecule sequencing, we identified parent-of-origin isoforms in maize hybrids, distinct novel isoforms in maize parent and hybrid lines, and imprinted genes from different tissues. Finally, we characterized variation in cis- and trans-regulatory effects. Our study provides measures of haplotypic expression that could increase accuracy in studies of allelic expression.


Author(s):  
Chengcai Zhang ◽  
Huadong Ren ◽  
Xiaohua Yao ◽  
Kailiang Wang ◽  
Jun Chang

Abstract Pecan is rich in bioactive components such as fatty acids and flavonoids and is an important nut type worldwide. Therefore, the molecular mechanisms of phytochemical biosynthesis in pecan are a focus of research. Recently, a draft genome and several transcriptomes have been published. However, the full-length mRNA transcripts remain unclear, and the regulatory mechanisms behind the quality components biosynthesis and accumulation have not been fully investigated. In this study, single-molecule long read sequencing technology was used to obtain full-length transcripts of pecan kernels. In total, 37 504 isoforms of 16 702 genes were mapped to the reference genome. The numbers of known isoforms, new isoforms, and novel isoforms were 9013 (24.03%), 26 080 (69.54%), and 2411 (6.51%), respectively. Over 80% of the transcripts (30 751, 81.99%) had functional annotations. A total of 15 465 alternative splicing (AS) events and 65 761 alternative polyadenylation events were detected; wherein, the retained intron was the predominant type (5652, 36.55%) of AS. Furthermore, 1894 long non-coding RNAs and 1643 transcription factors were predicted using bioinformatics methods. Finally, the structural genes associated with fatty acid (FA) and flavonoid biosynthesis were characterized. A high frequency of AS accuracy (70.31%) was observed in FA synthesis-associated genes. The present study provides a full-length transcriptome dataset of pecan kernels, which will significantly enhance the understanding of the regulatory basis of phytochemical biosynthesis during pecan kernel maturation.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Yueming Hu ◽  
Xing-Sheng Shu ◽  
Jiaxian Yu ◽  
Ming-an Sun ◽  
Zewei Chen ◽  
...  

AbstractHuman genes form a large variety of isoforms after transcription, encoding distinct transcripts to exert different functions. Single-molecule RNA sequencing facilitates accurate identification of the isoforms by extending nucleotide read length significantly. However, the gene or isoform diversity is lowly represented by the mRNA molecules captured by single-molecule RNA sequencing. Here, we show that a cDNA normalization procedure before the library preparation for PacBio RS II sequencing captures 3.2–6.0 fold more full-length high-quality isoform species for different human samples, as compared to the non-normalized capture procedure. Many lowly expressed, functionally important isoforms can be detected. In addition, normalized PacBio RNA sequencing also resolves more allele-specific haplotype transcripts. Finally, we apply the cDNA normalization based long-read RNA sequencing method to profile the transcriptome of human gastric signet-ring cell carcinomas, identify new cancer-specific transcriptome signatures, and thus, bring out the utility of the improved protocols in gene expression studies.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Shang-Qian Xie ◽  
Yue Han ◽  
Xiao-Zhou Chen ◽  
Tai-Yu Cao ◽  
Kai-Kai Ji ◽  
...  

The accurate landscape of transcript isoforms plays an important role in the understanding of gene function and gene regulation. However, building complete transcripts is very challenging for short reads generated using next-generation sequencing. Fortunately, isoform sequencing (Iso-Seq) using single-molecule sequencing technologies, such as PacBio SMRT, provides long reads spanning entire transcript isoforms which do not require assembly. Therefore, we have developed ISOdb, a comprehensive resource database for hosting and carrying out an in-depth analysis of Iso-Seq datasets and visualising the full-length transcript isoforms. The current version of ISOdb has collected 93 publicly available Iso-Seq samples from eight species and presents the samples in two levels: (1) sample level, including metainformation, long read distribution, isoform numbers, and alternative splicing (AS) events of each sample; (2) gene level, including the total isoforms, novel isoform number, novel AS number, and isoform visualisation of each gene. In addition, ISOdb provides a user interface in the website for uploading sample information to facilitate the collection and analysis of researchers’ datasets. Currently, ISOdb is the first repository that offers comprehensive resources and convenient public access for hosting, analysing, and visualising Iso-Seq data, which is freely available.


2017 ◽  
Author(s):  
Julien Lagarde ◽  
Barbara Uszczynska-Ratajczak ◽  
Silvia Carbonell ◽  
SÍlvia Pérez-Lluch ◽  
Amaya Abad ◽  
...  

AbstractAccurate annotations of genes and their transcripts is a foundation of genomics, but no annotation technique presently combines throughput and accuracy. As a result, reference gene collections remain incomplete: many gene models are fragmentary, while thousands more remain uncatalogued–particularly for long noncoding RNAs (lncRNAs). To accelerate lncRNA annotation, the GENCODE consortium has developed RNA Capture Long Seq (CLS), combining targeted RNA capture with third-generation long-read sequencing. We present an experimental re-annotation of the GENCODE intergenic lncRNA population in matched human and mouse tissues, resulting in novel transcript models for 3574 / 561 gene loci, respectively. CLS approximately doubles the annotated complexity of targeted loci, outperforming existing short-read techniques. Full-length transcript models produced by CLS enable us to definitively characterize the genomic features of lncRNAs, including promoter- and gene-structure, and protein-coding potential. Thus CLS removes a longstanding bottleneck of transcriptome annotation, generating manual-quality full-length transcript models at high-throughput scales.Abbreviationsbpbase pairFLfull lengthntnucleotideROIread of insert, i.e. PacBio readSJsplice junctionSMRTsingle-molecule real-timeTMtranscript model


Sign in / Sign up

Export Citation Format

Share Document