scholarly journals Raabin-WBC: a large free access dataset of white blood cells from normal peripheral blood

Author(s):  
Zahra Mousavi Kouzehkanan ◽  
Sepehr Saghari ◽  
Eslam Tavakoli ◽  
Peyman Rostami ◽  
Mohammadjavad Abaszadeh ◽  
...  

Abstract Accurate and early detection of peripheral white blood cell anomalies plays a crucial role in the evaluation of an individual's well-being. The emergence of new technologies such as artificial intelligence can be very effective in achieving this. In this regard, most of the state-of-the-art methods use deep neural networks. Data can significantly influence the performance and generalization power of machine learning approaches, especially deep neural networks. To that end, we collected a large free available dataset of white blood cells from normal peripheral blood samples called Raabin-WBC. Our dataset contains about 40000 white blood cells and artifacts (color spots). To reassure correct data, a significant number of cells were labeled by two experts, and the ground truth of nucleus and cytoplasm were extracted by experts for some cells (about 1145), as well. To provide the necessary diversity, various smears have been imaged. Hence, two different cameras and two different microscopes were used. The Raabin-WBC dataset can be used for different machine learning tasks such as classification, detection, segmentation, and localization. We also did some primary deep learning experiments on Raabin-WBC, and we showed how the generalization power of machine learning methods, especially deep neural networks, was affected by the mentioned diversity.

2021 ◽  
Author(s):  
Seyedeh-Zahra Mousavi Kouzehkanan ◽  
Sepehr Saghari ◽  
Eslam Tavakoli ◽  
Peyman Rostami ◽  
Mohammadjavad AbbasZadeh ◽  
...  

Accurate and early detection of peripheral white blood cell anomalies plays a crucial role in the evaluation of an individual's well-being. The emergence of new technologies such as artificial intelligence can be very effective in achieving this. In this regard, most of the state-of-the-art methods use deep neural networks. Data can significantly influence the performance and generalization power of machine learning approaches, especially deep neural networks. To that end, we collected a large free available dataset of white blood cells from normal peripheral blood samples called Raabin-WBC. Our dataset contains about 40000 white blood cells and artifacts (color spots). To reassure correct data, a significant number of cells were labeled by two experts, and the ground truth of nucleus and cytoplasm were extracted by experts for some cells (about 1145), as well. To provide the necessary diversity, various smears have been imaged. Hence, two different cameras and two different microscopes were used. The Raabin-WBC dataset can be used for different machine learning tasks such as classification, detection, segmentation, and localization. We also did some primary deep learning experiments on Raabin-WBC, and we showed how the generalization power of machine learning methods, especially deep neural networks, was affected by the mentioned diversity.


2021 ◽  
Vol 11 (15) ◽  
pp. 6704
Author(s):  
Jingyong Cai ◽  
Masashi Takemoto ◽  
Yuming Qiu ◽  
Hironori Nakajo

Despite being heavily used in the training of deep neural networks (DNNs), multipliers are resource-intensive and insufficient in many different scenarios. Previous discoveries have revealed the superiority when activation functions, such as the sigmoid, are calculated by shift-and-add operations, although they fail to remove multiplications in training altogether. In this paper, we propose an innovative approach that can convert all multiplications in the forward and backward inferences of DNNs into shift-and-add operations. Because the model parameters and backpropagated errors of a large DNN model are typically clustered around zero, these values can be approximated by their sine values. Multiplications between the weights and error signals are transferred to multiplications of their sine values, which are replaceable with simpler operations with the help of the product to sum formula. In addition, a rectified sine activation function is utilized for further converting layer inputs into sine values. In this way, the original multiplication-intensive operations can be computed through simple add-and-shift operations. This trigonometric approximation method provides an efficient training and inference alternative for devices with insufficient hardware multipliers. Experimental results demonstrate that this method is able to obtain a performance close to that of classical training algorithms. The approach we propose sheds new light on future hardware customization research for machine learning.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A164-A164
Author(s):  
Pahnwat Taweesedt ◽  
JungYoon Kim ◽  
Jaehyun Park ◽  
Jangwoon Park ◽  
Munish Sharma ◽  
...  

Abstract Introduction Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder with an estimation of one billion people. Full-night polysomnography is considered the gold standard for OSA diagnosis. However, it is time-consuming, expensive and is not readily available in many parts of the world. Many screening questionnaires and scores have been proposed for OSA prediction with high sensitivity and low specificity. The present study is intended to develop models with various machine learning techniques to predict the severity of OSA by incorporating features from multiple questionnaires. Methods Subjects who underwent full-night polysomnography in Torr sleep center, Texas and completed 5 OSA screening questionnaires/scores were included. OSA was diagnosed by using Apnea-Hypopnea Index ≥ 5. We trained five different machine learning models including Deep Neural Networks with the scaled principal component analysis (DNN-PCA), Random Forest (RF), Adaptive Boosting classifier (ABC), and K-Nearest Neighbors classifier (KNC) and Support Vector Machine Classifier (SVMC). Training:Testing subject ratio of 65:35 was used. All features including demographic data, body measurement, snoring and sleepiness history were obtained from 5 OSA screening questionnaires/scores (STOP-BANG questionnaires, Berlin questionnaires, NoSAS score, NAMES score and No-Apnea score). Performance parametrics were used to compare between machine learning models. Results Of 180 subjects, 51.5 % of subjects were male with mean (SD) age of 53.6 (15.1). One hundred and nineteen subjects were diagnosed with OSA. Area Under the Receiver Operating Characteristic Curve (AUROC) of DNN-PCA, RF, ABC, KNC, SVMC, STOP-BANG questionnaire, Berlin questionnaire, NoSAS score, NAMES score, and No-Apnea score were 0.85, 0.68, 0.52, 0.74, 0.75, 0.61, 0.63, 0,61, 0.58 and 0,58 respectively. DNN-PCA showed the highest AUROC with sensitivity of 0.79, specificity of 0.67, positive-predictivity of 0.93, F1 score of 0.86, and accuracy of 0.77. Conclusion Our result showed that DNN-PCA outperforms OSA screening questionnaires, scores and other machine learning models. Support (if any):


2021 ◽  
Vol 11 (7) ◽  
pp. 3184
Author(s):  
Ismael Garrido-Muñoz  ◽  
Arturo Montejo-Ráez  ◽  
Fernando Martínez-Santiago  ◽  
L. Alfonso Ureña-López 

Deep neural networks are hegemonic approaches to many machine learning areas, including natural language processing (NLP). Thanks to the availability of large corpora collections and the capability of deep architectures to shape internal language mechanisms in self-supervised learning processes (also known as “pre-training”), versatile and performing models are released continuously for every new network design. These networks, somehow, learn a probability distribution of words and relations across the training collection used, inheriting the potential flaws, inconsistencies and biases contained in such a collection. As pre-trained models have been found to be very useful approaches to transfer learning, dealing with bias has become a relevant issue in this new scenario. We introduce bias in a formal way and explore how it has been treated in several networks, in terms of detection and correction. In addition, available resources are identified and a strategy to deal with bias in deep NLP is proposed.


Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 39
Author(s):  
Carlos Lassance ◽  
Vincent Gripon ◽  
Antonio Ortega

Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists of training composite architectures in an end-to-end fashion, where inputs are associated with outputs trained to optimize an objective function. Because of their compositional nature, DL architectures naturally exhibit several intermediate representations of the inputs, which belong to so-called latent spaces. When treated individually, these intermediate representations are most of the time unconstrained during the learning process, as it is unclear which properties should be favored. However, when processing a batch of inputs concurrently, the corresponding set of intermediate representations exhibit relations (what we call a geometry) on which desired properties can be sought. In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems. In more detail, we propose to represent geometries by constructing similarity graphs from the intermediate representations obtained when processing a batch of inputs. By constraining these Latent Geometry Graphs (LGGs), we address the three following problems: (i) reproducing the behavior of a teacher architecture is achieved by mimicking its geometry, (ii) designing efficient embeddings for classification is achieved by targeting specific geometries, and (iii) robustness to deviations on inputs is achieved via enforcing smooth variation of geometry between consecutive latent spaces. Using standard vision benchmarks, we demonstrate the ability of the proposed geometry-based methods in solving the considered problems.


Author(s):  
E. Yu. Shchetinin

The recognition of human emotions is one of the most relevant and dynamically developing areas of modern speech technologies, and the recognition of emotions in speech (RER) is the most demanded part of them. In this paper, we propose a computer model of emotion recognition based on an ensemble of bidirectional recurrent neural network with LSTM memory cell and deep convolutional neural network ResNet18. In this paper, computer studies of the RAVDESS database containing emotional speech of a person are carried out. RAVDESS-a data set containing 7356 files. Entries contain the following emotions: 0 – neutral, 1 – calm, 2 – happiness, 3 – sadness, 4 – anger, 5 – fear, 6 – disgust, 7 – surprise. In total, the database contains 16 classes (8 emotions divided into male and female) for a total of 1440 samples (speech only). To train machine learning algorithms and deep neural networks to recognize emotions, existing audio recordings must be pre-processed in such a way as to extract the main characteristic features of certain emotions. This was done using Mel-frequency cepstral coefficients, chroma coefficients, as well as the characteristics of the frequency spectrum of audio recordings. In this paper, computer studies of various models of neural networks for emotion recognition are carried out on the example of the data described above. In addition, machine learning algorithms were used for comparative analysis. Thus, the following models were trained during the experiments: logistic regression (LR), classifier based on the support vector machine (SVM), decision tree (DT), random forest (RF), gradient boosting over trees – XGBoost, convolutional neural network CNN, recurrent neural network RNN (ResNet18), as well as an ensemble of convolutional and recurrent networks Stacked CNN-RNN. The results show that neural networks showed much higher accuracy in recognizing and classifying emotions than the machine learning algorithms used. Of the three neural network models presented, the CNN + BLSTM ensemble showed higher accuracy.


Sign in / Sign up

Export Citation Format

Share Document