scholarly journals Identification of LOXL3-Associating Immune Infiltration Landscape and Prognostic Value in Hepatocellular Carcinoma

Author(s):  
Ning Wang ◽  
Xue Zhou ◽  
Fei Tang ◽  
Xue Wang ◽  
Xiaowei Zhu

Abstract Hepatocellular carcinoma (HCC), the most common type of hepatic malignancies, remains a global health challenge with multiple aetiologies and low five-year survival rate. In recent years, breakthroughs in the field of tumor immunotherapy with immune checkpoint inhibitors (ICIs) have made a therapeutic revolution, which has been shown to improve the prognosis of patients with HCC. Immune infiltrates represent a major component of tumor microenvironment (TME), and play an essential role in both tumor progression and therapeutic response. The major unmet challenge in tumor immunotherapy is exploring the intrinsic and extrinsic mechanisms of TME promoting the management of HCC. Lysyl oxidase like 3 (LOXL3) participates in the remodeling of extracellular matrix (ECM) and the cross-linking of collagen and elastic fibers. It has been reported that LOXL3 is associated with the development and tumorigenesis of multiple types of cancer. In this study, we first found that LOXL3 gene was upregulated in tumor tissues compared with the normal tissues. Furthermore, LOXL3 expression is positively correlated with the infiltration of multiple immune cells and the expression of immune checkpoint genes in HCC. Meanwhile, high LOXL3 expression predicted poor outcomes of the patients with HCC. Functional enrichment analysis suggested that LOXL3 was mainly linked to extracellular structure and matrix organization, cell−cell adhesion, and T cell activation. This is the first comprehensive study to indicate that LOXL3 is correlated with immune infiltrates and may serve as a novel biomarker predicting prognosis and immunotherapy in HCC.

Author(s):  
Longxiang Xie ◽  
Xiaoyu Chao ◽  
Tieshan Teng ◽  
Qiming Li ◽  
Jianping Xie

Tuberculosis (TB), one major threat to humans, can infect one third of the worldwide population, and cause more than one million deaths each year. This study aimed to identify the effective diagnosis and therapy biomarkers of TB. Hence, we analyzed two microarray datasets (GSE54992 and GSE62525) derived from the Gene Expression Omnibus (GEO) database to find the differentially expressed genes (DEGs) of peripheral blood mononuclear cell (PBMC) between TB patients and healthy specimens. Functional and pathway enrichment of the DEGs were analyzed by Metascape database. Protein-protein interaction (PPI) network among the DEGs were constructed by STRING databases and visualized in Cytoscape software. The related transcription factors regulatory network of the DEGs was also constructed. A total of 190 DEGs including 36 up-regulated genes and 154 down-regulated genes were obtained in TB samples. Gene functional enrichment analysis showed that these DEGs were enriched in T cell activation, chemotaxis, leukocyte activation involved in immune response, cytokine secretion, head development, etc. The top six hub genes (namely, LRRK2, FYN, GART, CCR7, CXCR5, and FASLG) and two significant modules were got from PPI network of DEGs. Vital transcriptional factors, such as FoxC1 and GATA2, were discovered with close interaction with these six hub DEGs. By systemic bioinformatic analysis, many DEGs associated with TB were screened, and these identified hub DEGs may be potential biomarkers for diagnosis and treatment of TB in the future.


2021 ◽  
Vol 2 (3) ◽  
pp. 31-41
Author(s):  
D. A. Kharagezov ◽  
Yu. N. Lazutin ◽  
E. Yu. Zlatnik ◽  
A. B. Sagakyants ◽  
E. A. Mirzoyan ◽  
...  

The discovery of immune checkpoint inhibition has revolutionized the treatment of many solid malignancies, including non-small cell lung cancer (NSCLC). Immune checkpoint inhibitors (ICI) can restore the antitumor immune response by blocking the inhibition of T-cell activation. Anti-programmed death-ligand 1 (PD-L1) is currently the main biomarker of the effectiveness of anti-PD-1 / PD-L1 blockade in the treatment of NSCLC without driver mutations. High tumor mutational burden suggests an increased neoantigens load and has been associated with the effectiveness of ICI therapy. Microsatellite instability, a biomarker approved for immunotherapy across solid tumors, but it is uncommon in NSCLC. Primary resistance to ICIsis characteristic of NSCLC with driver mutations, acquired is associated with immunoediting resulting in the depletion of potentially immunogenic neoantigens. The review discusses recent advances and future directions for predicting the results of immunotherapy in patients with NSCLC.


Author(s):  
Nádia Ghinelli Amôr ◽  
Paulo Sérgio da Silva Santos ◽  
Ana Paula Campanelli

Squamous cell carcinoma (SCC) is the second most common skin cancer worldwide and, despite the relatively easy visualization of the tumor in the clinic, a sizeable number of SCC patients are diagnosed at advanced stages with local invasion and distant metastatic lesions. In the last decade, immunotherapy has emerged as the fourth pillar in cancer therapy via the targeting of immune checkpoint molecules such as programmed cell-death protein-1 (PD-1), programmed cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). FDA-approved monoclonal antibodies directed against these immune targets have provide survival benefit in a growing list of cancer types. Currently, there are two immunotherapy drugs available for cutaneous SCC: cemiplimab and pembrolizumab; both monoclonal antibodies (mAb) that block PD-1 thereby promoting T-cell activation and/or function. However, the success rate of these checkpoint inhibitors currently remains around 50%, which means that half of the patients with advanced SCC experience no benefit from this treatment. This review will highlight the mechanisms by which the immune checkpoint molecules regulate the tumor microenvironment (TME), as well as the ongoing clinical trials that are employing single or combinatory therapeutic approaches for SCC immunotherapy. We also discuss the regulation of additional pathways that might promote superior therapeutic efficacy, and consequently provide increased survival for those patients that do not benefit from the current checkpoint inhibitor therapies.


2018 ◽  
Vol 11 (2) ◽  
pp. 549-556 ◽  
Author(s):  
Yoshito Nishimura ◽  
Miho Yasuda ◽  
Kazuki Ocho ◽  
Masaya Iwamuro ◽  
Osamu Yamasaki ◽  
...  

Immune checkpoint inhibitors such as ipilimumab, a cytotoxic T-lymphocyte-associated antigen-4 inhibitor, have been widely used for advanced malignancies. As these inhibitors improve antitumor immunity via T-cell modulation, immune-mediated adverse events associated with T-cell activation, such as colitis, might occur. Herein, we describe a 75-year-old Japanese woman with metastatic malignant melanoma who developed hemorrhagic gastritis after ipilimumab treatment. There was no macroscopic or clinical improvement of gastritis after proton pump inhibitor treatment. However, her condition improved after approximately 3 weeks of corticosteroid therapy and Helicobacter pylori eradication. This case suggests a potential association between severe gastritis and immune checkpoint inhibitor treatment. Although several reports have mentioned ipilimumab-associated colitis, gastritis is considered to be rare. In the present case, H. pylori-associated gastritis might have been exacerbated by the T-cell modulation effect of ipilimumab. To date, no report has clarified the mechanism by which ipilimumab modifies H. pylori infection. The present treatment course provides a helpful perspective for similar cases.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 605
Author(s):  
Su Yin Lim ◽  
Sara Alavi ◽  
Zizhen Ming ◽  
Elena Shklovskaya ◽  
Carina Fung ◽  
...  

Immune checkpoint inhibitors that target the programmed cell death protein 1 (PD1) pathway have revolutionized the treatment of patients with advanced metastatic melanoma. PD1 inhibitors reinvigorate exhausted tumor-reactive T cells, thus restoring anti-tumor immunity. Tumor necrosis factor alpha (TNFα) is abundantly expressed as a consequence of T cell activation and can have pleiotropic effects on melanoma response and resistance to PD1 inhibitors. In this study, we examined the influence of TNFα on markers of melanoma dedifferentiation, antigen presentation and immune inhibition in a panel of 40 melanoma cell lines. We report that TNFα signaling is retained in all melanomas but the downstream impact of TNFα was dependent on the differentiation status of melanoma cells. We show that TNFα is a poor inducer of antigen presentation molecules HLA-ABC and HLA-DR but readily induces the PD-L2 immune checkpoint in melanoma cells. Our results suggest that TNFα promotes dynamic changes in melanoma cells that may favor immunotherapy resistance.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Shuang Qin ◽  
Linping Xu ◽  
Ming Yi ◽  
Shengnan Yu ◽  
Kongming Wu ◽  
...  

Abstract The emergence of immune checkpoint inhibitors (ICIs), mainly including anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) monoclonal antibodies (mAbs), has shaped therapeutic landscape of some type of cancers. Despite some ICIs have manifested compelling clinical effectiveness in certain tumor types, the majority of patients still showed de novo or adaptive resistance. At present, the overall efficiency of immune checkpoint therapy remains unsatisfactory. Exploring additional immune checkpoint molecules is a hot research topic. Recent studies have identified several new immune checkpoint targets, like lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and mucin-domain containing-3 (TIM-3), T cell immunoglobulin and ITIM domain (TIGIT), V-domain Ig suppressor of T cell activation (VISTA), and so on. The investigations about these molecules have generated promising results in preclinical studies and/or clinical trials. In this review, we discussed the structure and expression of these newly-characterized immune checkpoints molecules, presented the current progress and understanding of them. Moreover, we summarized the clinical data pertinent to these recent immune checkpoint molecules as well as their application prospects.


2021 ◽  
Vol 12 ◽  
Author(s):  
Selina K. Wong ◽  
Caroline A. Nebhan ◽  
Douglas B. Johnson

The addition of immune checkpoint inhibitors (ICIs) to the therapeutic armamentarium for solid malignancies has resulted in unprecedented improvements in patient outcomes in many cancers. The landscape of ICIs continues to evolve with novel approaches such as dual immune checkpoint blockade and combination therapies with other anticancer agents including cytotoxic chemotherapies and/or antiangiogenics. However, there is significant heterogeneity seen in antitumor responses, with certain patients deriving durable benefit, others experiencing initial benefit followed by acquired resistance necessitating change in therapy, and still others who are primarily refractory to ICIs. While generally better tolerated than traditional cytotoxic chemotherapy, ICIs are associated with unique toxicities, termed immune-related adverse events (irAEs), which can be severe or even lethal. As a disease of aging, older individuals make up a large proportion of patients diagnosed with cancer, yet this population is often underrepresented in clinical trials. Because ICIs indirectly target malignant cells through T cell activation, it has been hypothesized that age-related changes to the immune system may impact the efficacy and toxicity of these drugs. In this review, we discuss differences in the clinical efficacy and toxicity of ICIs in patients at the extremes of age.


2021 ◽  
Vol 16 ◽  
Author(s):  
Wissam Zam ◽  
Lina Ali

Background: Immunotherapy drugs, known as immune checkpoint inhibitors (ICIs), work by blocking checkpoint proteins from binding with their partner proteins. The two main pathways that are specifically targeted in clinical practice are cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1) that showed potent immune-modulatory effects through their function as negative regulators of T cell activation. Methods: In view of the rapid and extensive development of this research field, we conducted a comprehensive review of the literature and update on the use of CTLA-4, PD-1 and PD-L1 targeted therapy in the treatment of several types of cancer including melanoma, non-small-cell lung carcinoma, breast cancer, hepatocellular carcinoma, hodgkin lymphoma, cervical cancer, head and neck squamous cell carcinoma. Results: Based on the last updated list released on March 2019, seven ICIs are approved by the FDA including ipilimumab, pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, and cemiplimab. Conclusion: This review also highlighted the most common adverse effects caused by ICIs and which affect people in different ways.


Sign in / Sign up

Export Citation Format

Share Document