scholarly journals Effect of Iron Supplementation On The Biogas Production and Microbial Community Distribution During Anaerobic Digestion of Food Waste Process

Author(s):  
Yue Xu ◽  
Rongtang Zhang ◽  
Jiesheng Liu ◽  
Xinghua He ◽  
Haijun Lu ◽  
...  

Abstract Iron as micronutrients is of great significance for forming a stable and efficient anaerobic digestion of food waste. Aim of this study was to examine the effect of iron supplementation on the mesophilic anaerobic digestion of food waste. Firstly, batch experiments were conducted with different iron concentration at a constant kitchen waste/inoculum ratio (K/I = 1.0), which indicated that the effect of iron on anaerobic digestion of was strictly dosage-dependent. Then, anaerobic digestion of food waste was conducted for 50 days in semi-continuous rectors with optimal iron concentration (2.0mg /L) under the same conditions. And the semi-continuous rectors obtained a good operation performance with low volatile fatty acids concentration, higher biogas production, high coenzyme F420 and dehydrogenase concentrations. Furthermore, two samples taken on 7th day and 50th day were analyzed by high-throughput sequencing, which illustrated that the composition anaerobe community was stable. However, the growth and activity of several syntrophic microbial groups (Aminobacterium, Syntrophomonas, Anaerolineaceae, Methanosaeta, Methanosarcina, Methanobacterium and Methanospirillum), were stimulated by iron supplementation. The shift of microbial community suggested that a high-efficiency microbial community for methane production from food waste was formed by iron supplementation.

2021 ◽  
Vol 129 ◽  
pp. 20-25
Author(s):  
Gamal K. Hassan ◽  
Rhys Jon Jones ◽  
Jaime Massanet-Nicolau ◽  
Richard Dinsdale ◽  
M.M. Abo-Aly ◽  
...  

Author(s):  
Kai Schumüller ◽  
Dirk Weichgrebe ◽  
Stephan Köster

AbstractTo tap the organic waste generated onboard cruise ships is a very promising approach to reduce their adverse impact on the maritime environment. Biogas produced by means of onboard anaerobic digestion offers a complementary energy source for ships’ operation. This report comprises a detailed presentation of the results gained from comprehensive investigations on the gas yield from onboard substrates such as food waste, sewage sludge and screening solids. Each person onboard generates a total average of about 9 kg of organic waste per day. The performed analyses of substrates and anaerobic digestion tests revealed an accumulated methane yield of around 159 L per person per day. The anaerobic co-digestion of sewage sludge and food waste (50:50 VS) emerged as particularly effective and led to an increased biogas yield by 24%, compared to the mono-fermentation. In the best case, onboard biogas production can provide an energetic output of 82 W/P, on average covering 3.3 to 4.1% of the total energy demand of a cruise ship.


2013 ◽  
Vol 67 (9) ◽  
Author(s):  
Karina Michalska ◽  
Stanisław Ledakowicz

AbstractThis work studies the influence of the alkali pre-treatment of Sorghum Moench — a representative of energy crops used in biogas production. Solutions containing various concentrations of sodium hydroxide were used to achieve the highest degradation of lignocellulosic structures. The results obtained after chemical pre-treatment indicate that the use of NaOH leads to the removal of almost all lignin (over 99 % in the case of 5 mass % NaOH) from the biomass, which is a prerequisite for efficient anaerobic digestion. Several parameters, such as chemical oxygen demand, total organic carbon, total phenolic content, volatile fatty acids, and general nitrogen were determined in the hydrolysates thus obtained in order to define the most favourable conditions. The best results were obtained for the Sorghum treated with 5 mass % NaOH at 121°C for 30 min The hydrolysate thus achieved consisted of high total phenolic compounds concentration (ca. 4.7 g L−1) and chemical oxygen demand value (ca. 45 g L−1). Although single alkali hydrolysis causes total degradation of glucose, a combined chemical and enzymatic pre-treatment of Sorghum leads to the release of large amounts of this monosaccharide into the supernatant. This indicates that alkali pre-treatment does not lead to complete cellulose destruction. The high degradation of lignin structure in the first step of the pre-treatment rendered the remainder of the biomass available for enzymatic action. A comparison of the efficiency of biogas production from untreated Sorghum and Sorghum treated with the use of NaOH and enzymes shows that chemical hydrolysis improves the anaerobic digestion effectiveness and the combined pre-treatment could have great potential for methane generation.


2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Shaona Wang ◽  
Kang Du ◽  
Rongfang Yuan ◽  
Huilun Chen ◽  
Fei Wang ◽  
...  

The effects of four types of sulfonamide antibiotics (SAs), including sulfaquinoxaline, sulfamethoxazole, sulfamethoxydiazine and sulfathiazole, on the digestion performance during anaerobic digestion process were studied using a lab-scale anaerobic sequencing batch reactor, and the changes of the community structure in the presence of SAs were investigated with the help of high throughput sequencing. The results indicated that when SAs were added, the hydrolytic acidification process was inhibited, and the accumulation of volatile fatty acids (VFAs) was induced, resulting in the suppression of methane production. However, the inhibition mechanism of different SAs was quite different. The inhibitory effect of high concentration of SAs on the hydrolysis of solid particulate matter into dissolved organic matter followed the order of sulfaquinoxaline > sulfamethoxydiazine > sulfathiazole > sulfamethoxazole. SAs have obvious inhibitory effects on acidification and methanation of dissolved organic matter, especially sulfathiazole. The richness and the community composition of the microorganism including bacteria and archaea in the digestion system were affected by SAs. Under the effect of SAs, the relative abundance of many microorganisms is negatively correlated with methane production, among which Methanobrevibacter, a kind of Archaea, had the greatest influence on methane production.


2018 ◽  
Vol 262 ◽  
pp. 148-158 ◽  
Author(s):  
Xuya Peng ◽  
ShangYi Zhang ◽  
Lei Li ◽  
Xiaofei Zhao ◽  
Yao Ma ◽  
...  

2021 ◽  
Author(s):  
Júlia Ronzella Ottoni ◽  
Suzan Prado Fernandes Bernal ◽  
Tiago Joelzer Marteres ◽  
Franciele Natividade Luiz ◽  
Viviane Piccin dos Santos ◽  
...  

Abstract The search for sustainable development has led countries around the world to seek the improvement of technologies that use renewable energy sources. One of the alternatives in the production of renewable energy comes from the use of waste including urban solids, animal excrement from livestock and biomass residues from agro-industrial plants. These materials may be used in the production of biogas, making its production highly sustainable and environmentally friendly, in addition to reducing public expenses for the treatment of those wastes. The present study evaluated the cultivated and uncultivated microbial community from a substrate (starter) used as an adapter for biogas production in anaerobic digestion processes. 16S rDNA metabarcoding revealed domain of bacteria belonging to the phyla Firmicutes, Bacteroidota, Chloroflexi and Synergistota. The methanogenic group was represented by the phyla Halobacterota and Euryarchaeota. Through 16S rRNA sequencing analysis of isolates recovered from the starter culture, the genera Rhodococcus, Vagococcus, Lysinibacillus, Niallia, Priestia, Robertmurraya, Luteimonas and Proteiniclasticum were recovered, groups that were not observed in the metabarcoding data. The groups mentioned are involved in the metabolism pathways of sugars and other compounds derived from lignocellulosic material, as well as in anaerobic methane production processes. The results demonstrate that culture-dependent approaches, such as isolation and sequencing of isolates, as well as culture-independent studies, such as the Metabarcoding approach, are complementary methodologies that, when integrated, provide robust and comprehensive information about the microbial communities involved in various processes, including the production of biogas in anaerobic digestion processes.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1487
Author(s):  
Vicky De Groof ◽  
Marta Coma ◽  
Tom C. Arnot ◽  
David J. Leak ◽  
Ana B. Lanham

Production of medium chain carboxylic acids (MCCA) as renewable feedstock bio-chemicals, from food waste (FW), requires complicated reactor configurations and supplementation of chemicals to achieve product selectivity. This study evaluated the manipulation of organic loading rate in an un-supplemented, single stage stirred tank reactor to steer an anaerobic digestion (AD) microbiome towards acidogenic fermentation (AF), and thence to chain elongation. Increasing substrate availability by switching to a FW feedstock with a higher COD stimulated chain elongation. The MCCA species n-caproic (10.1 ± 1.7 g L−1) and n-caprylic (2.9 ± 0.8 g L−1) acid were produced at concentrations comparable to more complex reactor set-ups. As a result, of the adjusted operating strategy, a more specialised microbiome developed containing several MCCA-producing bacteria, lactic acid-producing Olsenella spp. and hydrogenotrophic methanogens. By contrast, in an AD reactor that was operated in parallel to produce biogas, the retention times had to be doubled when fed with the high-COD FW to maintain biogas production. The AD microbiome comprised a diverse mixture of hydrolytic and acidogenic bacteria, and acetoclastic methanogens. The results suggest that manipulation of organic loading rate and food-to-microorganism ratio may be used as an operating strategy to direct an AD microbiome towards AF, and to stimulate chain elongation in FW fermentation, using a simple, un-supplemented stirred tank set-up. This outcome provides the opportunity to repurpose existing AD assets operating on food waste for biogas production, to produce potentially higher value MCCA products, via simple manipulation of the feeding strategy.


Sign in / Sign up

Export Citation Format

Share Document