scholarly journals Remote Sensing Based Study of Surge Characterization of Klutlan and Fisher Glaciers, St. Elias Mountains, North America

Author(s):  
Arjun Pratap Shahi ◽  
Praveen Kumar Rai ◽  
Prafull Singh ◽  
Varun Narayan Mishra

Abstract The detailed study of glacier surges in St. Elias Mountains is very scarce.Robust and repeat observation of surface displacement, elevation changes and surge reoccurrence intervalsare limited to few surge-type glaciers (e.g., Variegated, Bearing, Lowell and Donjek). Therefore, this study presents the first detailed surge dynamics of Klutlan (1990-2019) and Fisher (1984-2019) glaciers in the St. Elias Mountains, North America. Surface displacement estimation using optical imagery (Landsat TM, ETM+, OLI and Sentinel 2) and surface elevation changes derived from ASTER DEMs were used to understand the surge dynamics. Klutlan Glacier lackspre-surge acceleration and had six years longactive phase (2013-2019). The surge of Klutlan Glacier showed two surface flow maxima(6.2 ± 0.2 m d-1and ~5 ± 0.2 m d-1),in summer of 2016 and2018 respectively.During 2019-2020, in the reservoir zone, maximum surface lowering of -65± 33m was observed whereas, in the receiving zone, maximum ice thickness increased by +31 ± 40 m. The dynamic balance line (DBL)on Klutlan Glaciermoved ~16 km down-glacier during 2019 (788masl.) in comparison with 2004 (1998 masl.). The Fisher Glacier exhibitssix years (2007-2013) long pre-surge acceleration, three years (2013-2016) long active phase and surge terminated gradually. The peak surge displacement ~7 ± 0.4 m d-1was observed in summer of 2015. The reservoir zone experienced a maximum lowering of -60 ± 22 mfrom 2019 to 2003 while lower receiving zone maximum thickened by +80± 22 m. The DBL shifted ~3 km down-glacier during 2019 (959 masl.) as compared to 2016 (1006 masl.). This study assumes that the surge of Fisher Glacier is partially matched with a thermally controlled surge. However, the surge characteristics of Klutlan Glacier doesnot corroborate with globally recognised hydrological or thermally controlled surge mechanism.

1991 ◽  
Vol 37 (127) ◽  
pp. 388-400 ◽  
Author(s):  
Julian A. Dowdeswell ◽  
Gordon S. Hamilton ◽  
Jon Ove Hagen

AbstractMany glaciers in Svalbard and in other glacierized areas of the world are known to surge. However, the time series of observations required to assess the duration of fast motion is very restricted. Data on active-phase duration in Svalbard come from aerial photographs, satellite imagery, field surveys and airborne reconnaissance. Evidence on surge duration is available for eight Svalbard ice masses varying from 3 to 1250 km2. Worldwide, active-phase duration is recorded for less than 50 glaciers. Few observations are available on high polar ice masses. The duration of the active phase is significantly longer for Svalbard glaciers than for surge-type glaciers in other areas from which data are available. In Svalbard, the active phase may last from 3 to 10 years. By contrast, a surge duration of 1–2 years is more typical of ice masses in northwest North America, Iceland and the Pamirs. Ice velocities during the protracted active phase on Svalbard glaciers are considerably lower than those for many surge-type glaciers in these other regions. Mass is transferred down-glacier more slowly but over a considerably longer period. Svalbard surge-type glaciers do not exhibit the very abrupt termination of the active phase, over periods of a few days, observed for several Alaskan glaciers. The duration of the active phase in Svalbard is not dependent on parameters related to glacier size. The quiescent phase is also relatively long (50–500 years) for Svalbard ice masses. Detailed field monitoring of changing basal conditions through the surge cycle is required from surge-type glaciers in Svalbard in order to explain the significantly longer length of the active phase for glaciers in the archipelago, which may also typify other high polar ice masses. The finding that surge behaviour, in the form of active-phase duration, shows systematic differences between different regions and their environments has important implications for understanding the processes responsible for glacier surges.


1991 ◽  
Vol 37 (127) ◽  
pp. 388-400 ◽  
Author(s):  
Julian A. Dowdeswell ◽  
Gordon S. Hamilton ◽  
Jon Ove Hagen

AbstractMany glaciers in Svalbard and in other glacierized areas of the world are known to surge. However, the time series of observations required to assess the duration of fast motion is very restricted. Data on active-phase duration in Svalbard come from aerial photographs, satellite imagery, field surveys and airborne reconnaissance. Evidence on surge duration is available for eight Svalbard ice masses varying from 3 to 1250 km2. Worldwide, active-phase duration is recorded for less than 50 glaciers. Few observations are available on high polar ice masses. The duration of the active phase is significantly longer for Svalbard glaciers than for surge-type glaciers in other areas from which data are available. In Svalbard, the active phase may last from 3 to 10 years. By contrast, a surge duration of 1–2 years is more typical of ice masses in northwest North America, Iceland and the Pamirs. Ice velocities during the protracted active phase on Svalbard glaciers are considerably lower than those for many surge-type glaciers in these other regions. Mass is transferred down-glacier more slowly but over a considerably longer period. Svalbard surge-type glaciers do not exhibit the very abrupt termination of the active phase, over periods of a few days, observed for several Alaskan glaciers. The duration of the active phase in Svalbard is not dependent on parameters related to glacier size. The quiescent phase is also relatively long (50–500 years) for Svalbard ice masses. Detailed field monitoring of changing basal conditions through the surge cycle is required from surge-type glaciers in Svalbard in order to explain the significantly longer length of the active phase for glaciers in the archipelago, which may also typify other high polar ice masses. The finding that surge behaviour, in the form of active-phase duration, shows systematic differences between different regions and their environments has important implications for understanding the processes responsible for glacier surges.


2019 ◽  
Vol 11 (18) ◽  
pp. 2162 ◽  
Author(s):  
Christopher Small

The combination of decameter resolution Sentinel 2 and hectometer resolution VIIRS offers the potential to quantify urban morphology at scales spanning the range from individual objects to global scale settlement networks. Multi-season spectral characteristics of built environments provide an independent complement to night light brightness compared for 12 urban systems. High fractions of spectrally stable impervious surface combined with persistent deep shadow between buildings are compared to road network density and outdoor lighting inferred from night light. These comparisons show better spatial agreement and more detailed representation of a wide range of built environments than possible using Landsat and DMSP-OLS. However, they also show that no single low luminance brightness threshold provides optimal spatial correlation to built extent derived from Sentinel in different urban systems. A 4-threshold comparison of 6 regional night light networks shows consistent spatial scaling, spanning 3 to 5 orders of magnitude in size and number with rank-size slopes consistently near −1. This scaling suggests a dynamic balance among the processes of nucleation, growth and interconnection. Rank-shape distributions based on √Area/Perimeter of network components scale similarly to rank-size distributions at higher brightness thresholds, but show both progressive then abrupt increases in fractal dimension of the largest, most interconnected network components at lower thresholds.


2021 ◽  
Vol 13 (10) ◽  
pp. 1865
Author(s):  
Gabriel Calassou ◽  
Pierre-Yves Foucher ◽  
Jean-François Léon

Stack emissions from the industrial sector are a subject of concern for air quality. However, the characterization of the stack emission plume properties from in situ observations remains a challenging task. This paper focuses on the characterization of the aerosol properties of a steel plant stack plume through the use of hyperspectral (HS) airborne remote sensing imagery. We propose a new method, based on the combination of HS airborne acquisition and surface reflectance imagery derived from the Sentinel-2 Multi-Spectral Instrument (MSI). The proposed method detects the plume footprint and estimates the surface reflectance under the plume, the aerosol optical thickness (AOT), and the modal radius of the plume. Hyperspectral surface reflectances are estimated using the coupled non-negative matrix factorization (CNMF) method combining HS and MSI data. The CNMF reduces the error associated with estimating the surface reflectance below the plume, particularly for heterogeneous classes. The AOT and modal radius are retrieved using an optimal estimation method (OEM), based on the forward model and allowing for uncertainties in the observations and in the model parameters. The a priori state vector is provided by a sequential method using the root mean square error (RMSE) metric, which outperforms the previously used cluster tuned matched filter (CTMF). The OEM degrees of freedom are then analysed, in order to refine the mask plume and to enhance the quality of the retrieval. The retrieved mean radii of aerosol particles in the plume is 0.125 μμm, with an uncertainty of 0.05 μμm. These results are close to the ultra-fine mode (modal radius around 0.1 μμm) observed from in situ measurements within metallurgical plant plumes from previous studies. The retrieved AOT values vary between 0.07 (near the source point) and 0.01, with uncertainties of 0.005 for the darkest surfaces and above 0.010 for the brightest surfaces.


Cornea ◽  
2001 ◽  
Vol 20 (6) ◽  
pp. 610-618 ◽  
Author(s):  
Carolyn G. Begley ◽  
Robin L. Chalmers ◽  
G. Lynn Mitchell ◽  
Kelly K. Nichols ◽  
Barbara Caffery ◽  
...  
Keyword(s):  

Catalysts ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 418 ◽  
Author(s):  
Muhammad Abdus Salam ◽  
Derek Creaser ◽  
Prakhar Arora ◽  
Stefanie Tamm ◽  
Eva Lind Grennfelt ◽  
...  

Hydrodeoxygenation (HDO) activity of a typical hydrotreating catalyst, sulfided NiMo/γ-Al2O3 for deoxygenation of a fatty acid has been explored in a batch reactor at 54 bar and 320 °C in the presence of contaminants, like phospholipids, which are known to be present in renewable feeds. Oleic acid was used for the investigation. Freshly sulfided catalyst showed a high degree of deoxygenation activity; products were predominantly composed of alkanes (C17 and C18). Experiments with a major phospholipid showed that activity for C17 was greatly reduced while activity to C18 was not altered significantly in the studied conditions. Characterization of the spent catalyst revealed the formation of aluminum phosphate (AlPO4), which affects the active phase dispersion, blocks the active sites, and causes pore blockage. In addition, choline, formed from the decomposition of phospholipid, partially contributes to the observed deactivation. Furthermore, a direct correlation was observed in the accumulation of coke on the catalyst and the amount of phospholipid introduced in the feed. We therefore propose that the reason for the increased deactivation is due to the dual effects of an irreversible change in phase to aluminum phosphate and the formation of choline.


Zoosymposia ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 147-150
Author(s):  
ROGER R. SEAPY

Taxonomic characterization of pterotracheoid gastropods, morphological characteristics and occurrence in California Current waters are reviewed. Single species of atlantid (Atlanta californiensis) and carinariid (Carinaria japonica) from these waters are described and illustrated.


Sign in / Sign up

Export Citation Format

Share Document