scholarly journals LncRNA CRNDE Acts as a ceRNA and Regulates AML Cell Proliferation and Apoptosis via miR136-5p/MCM5 Axis

2020 ◽  
Author(s):  
Chen Liu ◽  
Liang Zhong ◽  
Chenlan Shen ◽  
Xuan Chu ◽  
Xu Luo ◽  
...  

Abstract Background: Increasing evidence demonstrated that long noncoding RNAs (lncRNAs) act as important factors in the regulation of cell processes and tumorigenesis. The long-noncoding RNA colorectal neoplasia differentially expressed (CRNDE) gene has been found to be related to several types of cancer. Although CRNDE is highly expressed in AML, its mechanism of action in acute myeloid leukemia (AML) is unknown.Methods: The expression levels of CRNDE and miR-136-5p mRNAs were measured by quantitative real-time PCR. The effects of CRNDE knockdown on cell proliferation was assessed by the CCK8 assay, while apoptosis and cell cycle distribution were analyzed by flow cytometry. The expression of proteins related to cell cycle, cell apoptosis and MCM5 were analyzed by Western blotting. The luciferase reporter assay was used to confirm the interaction between CRNDE and miR-136-5p and between MCM5 and miR-136-5p in AML. The RNA immunoprecipitation assay was used to verify whether CRNDE exists in the miRNA mediated RISC complex.Results: In this study, we used GEPIA database to confirm that CRNDE expression was significantly upregulated in AML samples. The silencing of CRNDE inhibited AML cells’ proliferation ability, increased AML cells’ apoptotic rate and arrested AML cells at the G1 phase of the cell cycle. Mechanistically, CRNDE served as a competing endogenous RNA (ceRNA) for miR-136-5p and upregulated MCM5 expression by sponging miR-136-5p. In addition, rescue assays revealed that the effects of CRNDE knockdown could be reversed by miR-136-5p inhibitors in AML cells. Conclusion: Our results demonstrate that the CRNDE-miR-136-5p-MCM5 axis modulates AML progression and provide a new regulatory network of CRNDE in AML.

2020 ◽  
Author(s):  
Chen Liu ◽  
Liang Zhong ◽  
Chenlan Shen ◽  
Xuan Chu ◽  
Xu Luo ◽  
...  

Abstract Background Increasing evidence demonstrated that long noncoding RNAs (lncRNAs) act as important factors in the regulation of cell processes and tumorigenesis. The long-noncoding RNA colorectal neoplasia differentially expressed (CRNDE) gene has been found to be related to several types of cancer. Although CRNDE is highly expressed in AML, its mechanism of action in acute myeloid leukemia (AML) is unknown. Methods The expression levels of CRNDE and miR-136-5p mRNAs were measured by quantitative real-time PCR. The effects of CRNDE knockdown on cell proliferation was assessed by the CCK8 assay, while apoptosis and cell cycle distribution were analyzed by flow cytometry. The expression of proteins related to cell cycle, cell apoptosis and MCM5 were analyzed by Western blotting. The luciferase reporter assay was used to confirm the interaction between CRNDE and miR-136-5p and between MCM5 and miR-136-5p in AML. The RNA immunoprecipitation assay was used to verify whether CRNDE exists in the miRNA mediated RISC complex. Results In this study, we used GEPIA database to confirm that CRNDE expression was significantly upregulated in AML samples. The silencing of CRNDE inhibited AML cells’ proliferation ability, increased AML cells’ apoptotic rate and arrested AML cells at the G1 phase of the cell cycle. Mechanistically, CRNDE served as a competing endogenous RNA (ceRNA) for miR-136-5p and upregulated MCM5 expression by sponging miR-136-5p. In addition, rescue assays revealed that the effects of CRNDE knockdown could be reversed by miR-136-5p inhibitors in AML cells. Conclusion Our results demonstrate that the CRNDE-miR-136-5p-MCM5 axis modulates AML progression and provide a new regulatory network of CRNDE in AML.


2020 ◽  
Author(s):  
Chen Liu ◽  
Liang Zhong ◽  
Chenlan Shen ◽  
Xuan Chu ◽  
Xu Luo ◽  
...  

Abstract Background: Increasing evidence demonstrated that long noncoding RNAs (lncRNAs) act as important factors in the regulation of cell processes and tumorigenesis. The long-noncoding RNA colorectal neoplasia differentially expressed (CRNDE) gene has been found to be related to several types of cancer. Although CRNDE is highly expressed in AML, its mechanism of action in acute myeloid leukemia (AML) is unknown.Methods: The expression levels of CRNDE and miR-136-5p mRNAs were measured by quantitative real-time PCR. The effects of CRNDE knockdown on cell proliferation was assessed by the CCK8 assay, while apoptosis and cell cycle distribution were analyzed by flow cytometry. The expression of proteins related to cell cycle, cell apoptosis and MCM5 were analyzed by Western blotting. The luciferase reporter assay was used to confirm the interaction between CRNDE and miR-136-5p and between MCM5 and miR-136-5p in AML. The RNA immunoprecipitation assay was used to verify whether CRNDE exists in the miRNA mediated RISC complex.Results: In this study, we used GEPIA database to confirm that CRNDE expression was significantly upregulated in AML samples. The silencing of CRNDE inhibited AML cells’ proliferation ability, increased AML cells’ apoptotic rate and arrested AML cells at the G1 phase of the cell cycle. Mechanistically, CRNDE served as a competing endogenous RNA (ceRNA) for miR-136-5p and upregulated MCM5 expression by sponging miR-136-5p. In addition, rescue assays revealed that the effects of CRNDE knockdown could be reversed by miR-136-5p inhibitors in AML cells. Conclusion: Our results demonstrate that the CRNDE-miR-136-5p-MCM5 axis modulates AML progression and provide a new regulatory network of CRNDE in AML.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chen Liu ◽  
Liang Zhong ◽  
Chenlan Shen ◽  
Xuan Chu ◽  
Xu Luo ◽  
...  

AbstractThe long-noncoding RNA colorectal neoplasia differentially expressed (CRNDE) gene has been considered to be crucial in tumor malignancy. Although CRNDE is highly expressed in acute myeloid leukemia (AML), its mechanism of action remains unknown. In this study, GEPIA and qRT-PCR were performed to confirm the expression of CRNDE in AML samples and cell lines, respectively. CRNDE shRNA vectors were transfected to explore the biological functions of CRNDE. The cell proliferation was assessed by the CCK8 assay, while apoptosis and cell cycle distribution were measured by flow cytometry and Western blotting. The results showed that CRNDE was overexpressed in both AML samples and cell lines. CRNDE silencing inhibited proliferation and increased apoptotic rate and cell cycle arrest of KG-1a cells. The luciferase reporter assay coupled with RIP assay revealed that CRNDE act as a ceRNA. Rescue assays demonstrated that the effects of CRNDE silencing could be reversed by miR-136-5p inhibitors. In conclusion, our results expound that the CRNDE/miR-136-5p/MCM5 axis modulates cell progression and provide a new regulatory network of CRNDE in KG-1a cells.


2020 ◽  
Author(s):  
Xing Zeng ◽  
Zhiquan Hu ◽  
Yuanqing Shen ◽  
Xian Wei ◽  
Jiahua Gan ◽  
...  

Abstract BackgroundAccumulating evidence indicates miR-5195-3p exerts tumor suppressive role in several tumors. However, there is limited research on the clinical significance and biological function of miR-5195-3p in prostate cancer (PCa).MethodsExpression levels of miR-5195-3p and Cyclin L1 (CCNL1) were determined using quantitative real-time PCR. The clinical significance of miR-5195-3p in PCa patients was evaluated using Kaplan-Meier survival analysis and Cox regression models. Cell proliferation and cell cycle distribution were measured by CCK-8 assay and flow cytometry, respectively. The association between miR-5195-3p and CCNL1 was analyzed by luciferase reporter assay.ResultsMiR-5195-3p expression levels were significantly downregulated in 69 paired PCa tissues compared with matched adjacent normal tissues. The decreased miR-5195-3p expression was associated with Gleason score and TNM stage, as well as worse survival prognosis. The in vitro experiments showed that miR-5195-3p overexpression suppressed the proliferation and cell cycle G1/S transition in PC-3 and DU145 cells. Elevated miR-5195-3p abundance was also demonstrated to impair tumor formation in vivo using PC-3 xenografts. Mechanistically, Cyclin L1 (CCNL1) was a direct target of miR-5195-3p in PCa cells, which was inversely correlated with miR-5195-3p in PCa tissues. Importantly, CCNL1 knockdown imitated, while overexpression reversed the effects of miR-5195-3p overexpression on PCa cell proliferation and cell cycle G1/S transition.ConclusionsOur data suggests that miR-5195-3p functions as a tumor suppressor via downregulating G1/S related CCNL1 expression in PCa.


2021 ◽  
Author(s):  
Nikolai P Melnikov ◽  
Fyodor V Bolshakov ◽  
Veronika S Frolova ◽  
Ksenia V Skorentseva ◽  
Alexander V Ereskovsky ◽  
...  

Background: Tissues of multicellular animals are maintained due to a tight balance between cell proliferation and programmed cell death. Phylum Porifera is an early branching group of metazoans essential to understanding the key mechanisms of tissue homeostasis. This paper is dedicated to the comparative analysis of proliferation and apoptosis in intact tissues of two sponges belonging to distinct Porifera lineages, Halisarca dujardinii (class Demospongiae) and Leucosolenia variabilis (class Calcarea). Results: Labeled nucleotides EdU and anti-phosphorylated histone 3 antibodies reveal a considerable number of cycling cells in intact tissues of both species. The main type of cycling cells are choanocytes - flagellated cells of the aquiferous system. The rate of proliferation remains constant in areas containing choanoderm. Cell cycle distribution assessed by the quantitative DNA stain reveals the classic cell cycle distribution curve. During EdU pulse-chase experiments conducted in H. dujardinii, the contribution of the choanocytes to the total amount of EdU-positive cells decreases, while contribution of the mesohyl cells increases. These findings could indicate that the proliferation of the choanocytes is not solely limited to the renewal of the choanoderm, and that choanocytes may participate in the general cell turnover through migration. The number of apoptotic cells in intact tissues of both species is insignificant. In vivo studies in both species with TMRE and CellEvent Caspase-3/7 indicate that apoptosis might be independent of mitochondrial outer membrane permeabilization. Conclusions: A combination of confocal laser scanning microscopy and flow cytometry provides a quantitative description of cell turnover in intact sponge tissues. Intact tissues of H. dujardinii (Demospongiae) and L. variabilis (Calcarea) are highly proliferative, indicating either high rates of growth or cell turnover. Although the number of apoptotic cells is low, apoptosis could still be involved in the regular cell turnover.


2020 ◽  
Author(s):  
Hongxia Yao ◽  
Xiangjun Fu ◽  
Yueqing Chen ◽  
Mengling Duan ◽  
Li Guo ◽  
...  

Abstract BackgroundChronic myeloid leukemia (CML) is a major global health threat due to its low cure rate and high fatality rate. Studies have reported that miR-22, TET2, and p53 play a vital role in the progression of leukemia. However, it is unclear whether there is feedback regulation between them.MethodsTransfection efficiency of miR-22 and TET2 was detected by qRT-PCR. CCK-8 assay was applied to measure the proliferation ability of K562 cells. Flow cytometry was used for evaluation the cell cycle and apoptosis rate of K562 cells after transfection. Moreover, the interaction between miR-22, TET2 and P53 was analyzed by luciferase reporter gene assay.ResultsExperiments indicated that the TET2 expression was decreased and apoptosis was increased in the miR-22 mimic group, and cell cycle was arrested in G0/G1phase, the proliferation was markedly inhibited. Meanwhile we found that TET2 can affect the expression of p53. Then, we directly proved p53 inhibition miR-22 transcription, whereas miR-22 as a transcriptional repressor, TET2 expression is negatively regulated to form a feedback loop.ConclusionsmiR-22, TET2 and p53 can form a feedback loop and thus affect cell proliferation and apoptosis of chronic myeloid leukemia cells.


2020 ◽  
Vol 27 (1) ◽  
pp. 107327481989797 ◽  
Author(s):  
Dongdong Liu ◽  
Zheng Zou ◽  
Gen Li ◽  
Pengyu Pan ◽  
Guobiao Liang

Background: The mechanisms underlying the proliferation and apoptosis of glioma cells remain unelucidated. A recent study has revealed that microRNA-92b (miR-92b) inhibits apoptosis of glioma cells via downregulating DKK3. Notably, long noncoding RNA nuclear-enriched abundant transcript 1 (NEAT1) is predicted to have a possible interaction with miR-92b. Objective: This study aimed to identify whether NEAT1 affects glioma cell proliferation and apoptosis via regulating miR-92b. Methods: The expression of NEAT1 was compared between glioma tissues and adjacent tissues as well as between glioma cells and normal astrocytes using quantitative real-time polymerase chain reaction. Glioma cell proliferation was determined by using the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and glioma cell apoptosis was determined by using the flow cytometry. Results: The expression of NEAT1 was low in glioma tissues and cells compared to the normal ones. Overexpression of NEAT1 inhibited proliferation and promoted apoptosis of glioma cell lines (U-87 MG and U251). The interaction between NEAT1 and miR-92b was confirmed using RNA immunoprecipitation, RNA pull-down assay, and luciferase reporter assay. Importantly, the tumor suppressor function of overexpressing NEAT1 was achieved by downregulating miR-92b and subsequently upregulating DKK3. Conclusion: Our findings indicated that NEAT1 acts as a tumor suppressor in glioma cells, which provides a novel target in overcoming glioma growth.


2019 ◽  
Vol 317 (4) ◽  
pp. H830-H839 ◽  
Author(s):  
Zhen Liu ◽  
Zhenming Kang ◽  
Yujian Dai ◽  
Huiming Zheng ◽  
Yingjun Wang

Infantile hemangiomas (IH) are a type of benign vascular neoplasm that may cause permanent scarring. Hemangioma-derived endothelial cells (HemECs) are commonly used as an in vitro model to study IH. Long noncoding RNA is a type of RNA transcript longer than 200 nucleotides that does not encode any protein. LINC00342 was discovered to regulate proliferation and apoptosis in nonsmall cell lung cancer. However, the role of LINC00342 in IH has never been reported before. Expressions of LINC00342 and miR-3619-5p were detected in proliferating versus normal skin tissues. Colony formation and Cell-Couting Kit 8 assays were carried out to study the effects on cell proliferation after knockdown and overexpression of LINC00342, respectively. Meanwhile caspase-3 activity and nucleosomal fragmentation assay were applied to detect cell apoptosis. Micro-RNA binding sites on LINC00342 and hepatoma-derived growth factor (HDGF) were predicted and confirmed via dual-luciferase reporter assay. Biotin RNA pulldown assay was used to verify the direct binding between RNA molecules. LINC00342 enhanced proliferation and inhibited apoptosis in HemECs. MiR-3619-5p targeted both LINC00342 and HDGF, where LINC00342 sponged miR-3619-5p and positively regulated HDGF. HDGF knockdown rescued the effects of LINC00342 on HemECs. The LINC00342-miR-3619-5p-HDGF signaling pathway could regulate cell proliferation and apoptosis in HemECs. NEW & NOTEWORTHY The role of LINC00342 in infantile hemangiomas has not yet been elucidated. This paper highlights the regulatory role of LINC00342 in cell proliferation and apoptosis in hemangioma-derived endothelial cells and the underlying molecular mechanisms. The findings would provide potential target for treatment of infantile hemangiomas.


2020 ◽  
Vol 40 (1) ◽  
pp. 47-59
Author(s):  
Z Tao ◽  
Z Cao ◽  
X Wang ◽  
D Pan ◽  
Q Jia

To investigate the role of small nucleolus RNA host gene 14 (SNHG14) in the progression of atherosclerosis (AS), bioinformatics analysis, and other relevant experiments (cell counting kit-8, flow cytometry, quantitative real-time polymerase chain reaction, luciferase reporter, RNA immunoprecipitation, RNA pull-down, and western blot assays) were done. The current study revealed that SNHG14 level was high in the serum of AS patients and oxidized low-density lipoprotein (ox-LDL)-induced AS cell lines. Besides, we found that SNHG14 accelerated cell proliferation while inhibited cell apoptosis in ox-LDL-induced AS cell lines. Next, SNHG14 was confirmed to be a sponge for miR-186-5p in AS cells, and it was validated that SNHG14 regulated AS cell proliferation and apoptosis by sponging miR-186-5p. Moreover, we uncovered that WAS-interacting protein family member 2 (WIPF2) was a downstream target of miR-186-5p in AS cells. Finally, it was demonstrated that miR-186-5p modulated AS cell proliferation and apoptosis via targeting WIPF2. To conclude, our research disclosed that SNHG14 affected ox-LDL-induced AS cell proliferation and apoptosis through miR-186-5p/WIPF2 axis, which may provide a theoretical basis for the treatment and diagnosis of AS.


2019 ◽  
Vol 40 (3) ◽  
Author(s):  
Ji-Fu Zheng ◽  
Ning-Hong Guo ◽  
Fu-Ming Zi ◽  
Jing Cheng

ABSTRACT Multiple myeloma (MM) accounts for over twenty percent of hematological cancer-related death worldwide. Long noncoding RNA (lncRNA) H19 is associated with multiple tumorigenesis and is increased in MM, but the underlying mechanism of H19 in MM is unclear. In this study, the expression of H19, microRNA 152-3p (miR-152-3p), and BRD4 in MM patients was evaluated by quantitative real-time PCR (qRT-PCR) and Western blotting. Colony formation and flow cytometry analysis were used to determine the effects of H19 and miR-152-3p on MM cell proliferation, apoptosis, and cell cycle. A luciferase reporter assay was conducted to confirm the interaction among H19, miR-152-3p, and BRD4. A nude mouse xenograft model was established, and the cell proliferation and apoptosis were evaluated by immunohistochemistry (IHC) staining and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assay. We found that levels of H19 and BRD4 were upregulated and the expression of miR-152-3p was downregulated in MM patients. Dual luciferase reporter assay showed H19 targeted miR-152-3p to promote BRD4 expression. Knockdown of H19 repressed proliferation and enhanced apoptosis and cell cycle G1 arrest by upregulating miR-152-3p in MM cells. Furthermore, H19 knockdown suppressed the growth of xenograft tumor, reduced Ki-67 and BRD4 levels, and increased cell apoptosis in xenograft tumor tissues. Taking these results together, H19 knockdown suppresses MM tumorigenesis via inhibiting BRD4-mediated cell proliferation through targeting miR-152-3p, implying that H19 is a promising biomarker and drug target for MM.


Sign in / Sign up

Export Citation Format

Share Document