Long noncoding RNA SNHG14 regulates ox-LDL-induced atherosclerosis cell proliferation and apoptosis by targeting miR-186-5p/WIPF2 axis

2020 ◽  
Vol 40 (1) ◽  
pp. 47-59
Author(s):  
Z Tao ◽  
Z Cao ◽  
X Wang ◽  
D Pan ◽  
Q Jia

To investigate the role of small nucleolus RNA host gene 14 (SNHG14) in the progression of atherosclerosis (AS), bioinformatics analysis, and other relevant experiments (cell counting kit-8, flow cytometry, quantitative real-time polymerase chain reaction, luciferase reporter, RNA immunoprecipitation, RNA pull-down, and western blot assays) were done. The current study revealed that SNHG14 level was high in the serum of AS patients and oxidized low-density lipoprotein (ox-LDL)-induced AS cell lines. Besides, we found that SNHG14 accelerated cell proliferation while inhibited cell apoptosis in ox-LDL-induced AS cell lines. Next, SNHG14 was confirmed to be a sponge for miR-186-5p in AS cells, and it was validated that SNHG14 regulated AS cell proliferation and apoptosis by sponging miR-186-5p. Moreover, we uncovered that WAS-interacting protein family member 2 (WIPF2) was a downstream target of miR-186-5p in AS cells. Finally, it was demonstrated that miR-186-5p modulated AS cell proliferation and apoptosis via targeting WIPF2. To conclude, our research disclosed that SNHG14 affected ox-LDL-induced AS cell proliferation and apoptosis through miR-186-5p/WIPF2 axis, which may provide a theoretical basis for the treatment and diagnosis of AS.

Author(s):  
Lei Zhang ◽  
Qiulai Li ◽  
Yanxia Chen ◽  
Qiao Zhu

BACKGROUND: Oxidized low-density lipoprotein (ox-LDL) could induce endothelial injury and played a vital role in the progression and development of atherosclerosis. This study aimed to investigate the role of Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1) in ox-LDL-induced human umbilical vascular endothelial cells (HUVECs) injury and the potential mechanisms. METHODS: Cell proliferation and apoptosis were evaluated by Cell Counting Kit-8 (CCK-8) assay and flow cytometry assay, respectively. The levels of lactate dehydrogenase (LDH), reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD) and nitric oxide (NO) were detected by corresponding detection kits, respectively. Quantitative real-time PCR (qRT-PCR) was conducted to measure the expression of OIP5-AS1 or microRNA-30c-5p (miR-30c-5p) in HUVECs. Binding between OIP5-AS1 and miR-30c-5p was predicted through bioinformatics analysis and confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP). Western blot was used to analyze p-IκB, IκB, p-p65 and p65 levels. RESULTS: In HUVECs, exposure to ox-LDL led to a decrease in cell viability and an increase in LDH release and apoptosis with concomitant enhancement of oxidative stress, as evidenced by increased ROS and MDA generation, as well as decreased SOD activity and NO levels, while OIP5-AS1 knockdown or miR-30c-5p upregulation could rescue these effects above. Mechanically, OIP5-AS1 functioned as a sponge of miR-30c-5p. OIP5-AS1-induced injury and apoptosis, oxidative stress and activation of NF-κB pathway were reversed by miR-30c-5p in ox-LDL-treated HUVECs. CONCLUSION: OIP5-AS1 contributed to ox-LDL-treated HUVECs injury by activation of NF-κB pathway via miR-30c-5p.


Author(s):  
Zijian Shen ◽  
Haigang Li

BACKGROUND: Long non-coding RNAs (lncRNAs) are found to involve in modulating the development of atherosclerosis (AS). But the molecular mechanism of lncRNA growth-arrest specific transcript 5 (GAS5) in AS is not fully understood. METHODS: QRT-PCR was performed to measure the abundances of GAS5, miR-128-3p and fibulin 2 (FBLN2). Oxidized low-density lipoprotein (ox-LDL)-treated THP-1 cells were employed as cell models of AS. The cell proliferation and apoptosis were analyzed using CCK-8 and Flow cytometry assays, respectively. Levels of all protein were examined by western blot. The interaction among GAS5, miR-128-3p and FBLN2 was confirmed via dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. RESULTS: GAS5 was elevated and miR-128-3p was decreased in the serum of patients with AS and ox-LDL-stimulated THP-1 cells. Ox-LDL stimulation inhibited proliferation and induced apoptosis of THP-1 cells. Meanwhile, GAS5 directly targeted miR-128-3p and inversely modulated its expression. Importantly, GAS5 depletion facilitated cell proliferation and impaired apoptosis in ox-LDL-induced THP-1 cells. Additionally, GAS5 augmented FBLN2 expression through sponging miR-128-3p, and miR-128-3p facilitated proliferation and retarded apoptosis of ox-LDL-induced THP-1 cells by targeting FBLN2. CONCLUSION: GAS5 knockdown promoted the growth of ox-LDL-induced THP-1 cells through down-modulating FBLN2 and increasing miR-128-3p, suggesting the potential value of GAS5 for treatment of AS.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jipeng Lu ◽  
Zhongxiong Wu ◽  
Ying Xiong

Abstract Background Osteoarthritis (OA) is a joint disease characterized via destruction of cartilage. Chondrocyte damage is associated with cartilage destruction during OA. Long noncoding RNAs (lncRNAs) are implicated in the regulation of chondrocyte damage in OA progression. This study aims to investigate the role and underlying mechanism of lncRNA homeobox antisense intergenic RNA (HOTAIR) in OA chondrocyte injury. Methods Twenty-three OA patients and healthy controls without OA were recruited. Chondrocytes were isolated from OA cartilage tissues. HOTAIR, microRNA-107 (miR-107) and C-X-C motif chemokine ligand 12 (CXCL12) levels were measured by quantitative real-time polymerase chain reaction and western blot. Cell proliferation, apoptosis and extracellular matrix (ECM) degradation were measured using cell counting kit-8, flow cytometry and western blot. The target interaction was explored by bioinformatics, luciferase reporter and RNA immunoprecipitation assays. Results HOTAIR expression was enhanced, and miR-107 level was reduced in OA cartilage samples. HOTAIR overexpression inhibited cell proliferation, but induced cell apoptosis and ECM degradation in chondrocytes. HOTAIR knockdown caused an opposite effect. MiR-107 was sponged and inhibited via HOTAIR, and knockdown of miR-107 mitigated the effect of HOTAIR silence on chondrocyte injury. CXCL12 was targeted by miR-107. CXCL12 overexpression attenuated the roles of miR-107 overexpression or HOTAIR knockdown in the proliferation, apoptosis and ECM degradation. CXCL12 expression was decreased by HOTAIR silence, and restored by knockdown of miR-107. Conclusion HOTAIR knockdown promoted chondrocyte proliferation, but inhibited cell apoptosis and ECM degradation in OA chondrocytes by regulating the miR-107/CXCL12 axis.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Caihong Wen ◽  
Xiaoqing Feng ◽  
Honggang Yuan ◽  
Yong Gong ◽  
Guangsheng Wang

Abstract Background Circular RNAs (circRNAs) feature prominently in tumor progression. However, the biological function and molecular mechanism of circ_0003266 in colorectal cancer (CRC) require further investigation. Methods Circ_0003266 expression in 46 pairs CRC tissues / adjacent tissues, and CRC cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR); after circ_0003266 was overexpressed or knocked down in CRC cells, cell proliferation, apoptosis, migration, and invasion were evaluated by the cell counting kit-8 (CCK-8), flow cytometry, and Transwell assays, respectively; the interaction among circ_0003266, miR-503-5p, and programmed cell death 4 (PDCD4) was confirmed using bioinformatics analysis and dual-luciferase reporter assay; PDCD4 protein expression in CRC cells was quantified using Western blot. Results Circ_0003266 was significantly lowly expressed in CRC tissues and cell lines. Circ_0003266 overexpression markedly repressed CRC cell proliferation, migration, and invasion, and accelerated the cell apoptosis, but its overexpression promoted the malignant phenotypes of CRC cells. PDCD4 was a direct target of miR-503-5p and circ_0003266 promoted PDCD4 expression by competitively sponging miR-503-5p. Conclusion Circ_0003266 suppresses the CRC progression via sponging miR-503-5p and regulating PDCD4 expressions, which suggests that circ_0003266 may serve as a novel target for the treatment of CRC.


2020 ◽  
Vol 15 (1) ◽  
pp. 871-883
Author(s):  
Jinshan Zhang ◽  
Dan Rao ◽  
Haibo Ma ◽  
Defeng Kong ◽  
Xiaoming Xu ◽  
...  

AbstractBackgroundOsteosarcoma is a common primary malignant bone cancer. Long noncoding RNA small nucleolar RNA host gene 15 (SNHG15) has been reported to play an oncogenic role in many cancers. Nevertheless, the role of SNHG15 in the doxorubicin (DXR) resistance of osteosarcoma cells has not been fully addressed.MethodsCell Counting Kit-8 assay was conducted to measure the half-maximal inhibitory concentration value of DXR in osteosarcoma cells. Western blotting was carried out to examine the levels of autophagy-related proteins and GDNF family receptor alpha-1 (GFRA1). Quantitative reverse transcription-polymerase chain reaction was performed to determine the levels of SNHG15, miR-381-3p, and GFRA1. The proliferation of osteosarcoma cells was measured by MTT assay. The binding sites between miR-381-3p and SNHG15 or GFRA1 were predicted by Starbase bioinformatics software, and the interaction was confirmed by dual-luciferase reporter assay. Murine xenograft model was established to validate the function of SNHG15 in vivo.ResultsAutophagy inhibitor 3-methyladenine sensitized DXR-resistant osteosarcoma cell lines to DXR. SNHG15 was upregulated in DXR-resistant osteosarcoma tissues and cell lines. SNHG15 knockdown inhibited the proliferation, DXR resistance, and autophagy of osteosarcoma cells. MiR-381-3p was a direct target of SNHG15, and GFRA1 bound to miR-381-3p in osteosarcoma cells. SNHG15 contributed to DXR resistance through the miR-381-3p/GFRA1 axis in vitro. SNHG15 depletion contributed to the inhibitory effect of DXR on osteosarcoma tumor growth through the miR-381-3p/GFRA1 axis in vivo.ConclusionsSNHG15 enhanced the DXR resistance of osteosarcoma cells through elevating the autophagy via targeting the miR-381-3p/GFRA1 axis. Restoration of miR-381-3p expression might be an underlying therapeutic strategy to overcome the DXR resistance of osteosarcoma.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Deng Xiang ◽  
Yugang Li ◽  
Yanshui Lin

In recent years, the mechanism of cancer research has become hotspots of life science and medicine, especially due to the rapid development of molecular medicine and bioinformatics research. Similarly, the molecular mechanism also has received increasing attention in osteosarcoma (OS) research. Also, a considerable amount of research confirmed that circular RNAs (circRNAs) could regulate cancer cell growth and metastasis. This study aimed to explore the effect of a circRNA, circCCDC66, on OS and reveal its potential molecular mechanism. High circCCDC66 expression level was found in OS patient-derived tissue samples and OS cell lines by qRT-PCR. The abilities cell proliferation and metastatic of U2OS and SW1353 cells were then assessed by Cell Counting Kit-8 and transwell assay, respectively. The interaction between circCCDC66 and its target miRNAs were verified by the dual-luciferase reporter assay. Through functional experiments, we found that circCCDC66 knockdown promoted the inhibition of cell proliferation and metastatic of OS cell lines. From mechanistic perspective, circCCDC66 upregulated PTP1B by sponging miR-338-3p. Collectively, our findings demonstrated that circCCDC66 contributed to malignant behaviors of OS cells by miR-338-3p/PTP1B pathway, which suggested circCCDC66/miR-338-3p/PTP1B axis might be a potential therapeutic target.


2020 ◽  
Vol 18 ◽  
pp. 205873922093456 ◽  
Author(s):  
Xiaoqiang Ren ◽  
Jingwei Cai ◽  
Yongheng Wang ◽  
Xingren Zhu ◽  
Jun Qian ◽  
...  

Introduction: Long noncoding RNA ADAMTS9-AS2 (lncRNA ADAMTS9-AS2) has critical function in tumor growth and drug resistance of various cancers. However, the role and mechanism of lncRNA ADAMTS9-AS2 in osteosarcoma (OS) is still unclear. Methods: The expression of lncRNA ADAMTS9-AS2 and MicroRNAs-130a-5p (miR-130a-5p) was detected by real-time polymerase chain reaction (RT-qPCR) experiment. In addition, we used the plasmids transfection to construct the lncRNA ADAMTS9-AS2 overexpressed OS cell lines. Subsequently, the cell proliferation ability and the sensitivity to paclitaxel (PTX) in OS cells upon up-regulating lncRNA ADAMTS9-AS2 expression were analyzed via CCK-8 assay, while Western blotting experiment was performed to detect the regulatory mechanism. Results: We found that lncRNA ADAMTS9-AS2 was down-regulated in OS tissues, and the OS patients with lncRNA ADAMTS9-AS2 downexprssion were usually accompanied with a poor prognosis. Subsequently, we discovered that up-regulation of lncRNA ADAMTS9-AS2 inhibited cell proliferation and increased the sensitivity to PTX in OS cells. Interestingly, the Western blot results showed that overexpression of lncRNA ADAMTS9-AS2 could lead to PTEN expression increased, with PI3K and p-AKT expression decreased, indicating that lncRNA ADAMTS9-AS2 could increase the OS cell sensitivity to PTX via regulating PTEN-PI3K/AKT pathway. Furthermore, we identified MicroRNAs-130a-5p (miR-130a-5p) as the downstream target gene of lncRNA ADAMTS9-AS2, which was further confirmed by the luciferase reporter assay. More importantly, our data revealed that miR-130a-5p mimics could partly reverse the influence on cell proliferation and drug sensitivity induced by lncRNA ADAMTS9-AS2 overexpression. Conclusion: LncRNA ADAMTS9-AS2 exerts its anti-carcinogenesis function by sponging miR-130a-5p, which might be a new therapeutic target for OS treatment.


2020 ◽  
Author(s):  
Chen Liu ◽  
Liang Zhong ◽  
Chenlan Shen ◽  
Xuan Chu ◽  
Xu Luo ◽  
...  

Abstract Background Increasing evidence demonstrated that long noncoding RNAs (lncRNAs) act as important factors in the regulation of cell processes and tumorigenesis. The long-noncoding RNA colorectal neoplasia differentially expressed (CRNDE) gene has been found to be related to several types of cancer. Although CRNDE is highly expressed in AML, its mechanism of action in acute myeloid leukemia (AML) is unknown. Methods The expression levels of CRNDE and miR-136-5p mRNAs were measured by quantitative real-time PCR. The effects of CRNDE knockdown on cell proliferation was assessed by the CCK8 assay, while apoptosis and cell cycle distribution were analyzed by flow cytometry. The expression of proteins related to cell cycle, cell apoptosis and MCM5 were analyzed by Western blotting. The luciferase reporter assay was used to confirm the interaction between CRNDE and miR-136-5p and between MCM5 and miR-136-5p in AML. The RNA immunoprecipitation assay was used to verify whether CRNDE exists in the miRNA mediated RISC complex. Results In this study, we used GEPIA database to confirm that CRNDE expression was significantly upregulated in AML samples. The silencing of CRNDE inhibited AML cells’ proliferation ability, increased AML cells’ apoptotic rate and arrested AML cells at the G1 phase of the cell cycle. Mechanistically, CRNDE served as a competing endogenous RNA (ceRNA) for miR-136-5p and upregulated MCM5 expression by sponging miR-136-5p. In addition, rescue assays revealed that the effects of CRNDE knockdown could be reversed by miR-136-5p inhibitors in AML cells. Conclusion Our results demonstrate that the CRNDE-miR-136-5p-MCM5 axis modulates AML progression and provide a new regulatory network of CRNDE in AML.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Bin Liu ◽  
Xinli Zhan ◽  
Chong Liu

Introduction. Long noncoding RNAs (lncRNAs) have been implicated in a variety of biological functions, including tumor proliferation, apoptosis, progression, and metastasis. lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is overexpressed in various cancers, as well as osteosarcoma (OS); however, its underlying mechanism in OS is poorly understood. This investigation aims to elucidate the mechanisms of MALAT1 in OS proliferation and migration and to provide theoretical grounding for further targeted therapy in OS. Methods. In the present study, we applied qRT-PCR to assess the MALAT1 expression in OS tissues and cell lines. The effects of MALAT1 and miR-124-3p on OS cell proliferation and migration were studied by CCK-8 and scratch assays. Cell cycle and apoptosis were tested using a flow cytometer. The competing relationship between MALAT1 and miR-124-3p was confirmed by dual-luciferase reporter assay. Results. MALAT1 was overexpressed in OS cell lines and tissue specimens, and knockdown of MALAT1 significantly inhibited cell proliferation and migration and increased cell apoptosis and the percentage of G0/G1 phase. Furthermore, MALAT1 could directly bind to miR-124-3p and inhibit miR-124-3p expression. Moreover, MALAT1 overexpression significantly relieved the inhibition on OS cell proliferation mediated by miR-124-3p overexpression, which involved the derepression of sphingosine kinase 1 (SphK1). Conclusions. We propose that lncRNA MALAT1 interacts with miR-124-3p to modulate OS progression by targeting SphK1. Hence, we identified a novel MALAT1/miR-124-3p/SphK1 signaling pathway in the regulation of OS biological behaviors.


2020 ◽  
Author(s):  
Chao Wu ◽  
Xuzhao Bian ◽  
Liyuan Zhang ◽  
Yang Wu ◽  
Tianli Pei ◽  
...  

Abstract Background Lung adenocarcinoma (LUAD) is a high aggressive human cancer which usually diagnosed at advanced stages. Accumulating evidences indicate that long noncoding RNAs (lncRNAs) are crucial participants in LUAD progression. Methods The mRNA levels of LINC00968, miR-22-5p and cell division cycle 14A (CDC14A) were measured using quantitative real-time PCR. Cell proliferation was evaluated using cell counting kit-8 and flow cytometry. Cell migration and cell invasion were assessed by wound healing and transwell assay, respectively. The interactions between LINC00968 and miR-22-5p were validated by RNA immunoprecipitation, RNA pull down and luciferase reporter assay. Results We found that lncRNA LINC00968 was significantly down-regulated in LUAD tissues and cell lines. LINC00968 level was positively correlated to survival rate, and negatively correlated to tumor node metastasis stage, tumor size and lymph node metastasis of LUAD patients. LINC00968 over-expression in LUAD cells inhibited cell proliferation and induced cell cycle arrest at G1 phase. LINC00968 over-expression also suppressed migration, invasion and epithelial mesenchymal transition (EMT) as evidenced by elevated E-cadherin, decreased N-cadherin, TWIST and SNAIL levels. We further validated that LINC00968 localized in cytoplasma and acted as an upstream of microRNA miR-22-5p, which was up-regulated in LUAD tissues and cell lines. Besides, elevated miR-22-5p expression abolished the effect of LINC00968 over-expression on LUAD progression including in vivo tumor growth. In addition, we first validated that cell division cycle 14A (CDC14A), which was down-regulated in LUAD tissues, was a downstream target of miR-22-5p. We over-expressed CDC14A in LUAD cells and miR-22-5p induced LUAD progression was partially reversed. Conclusion our study demonstrated that LINC00968 inhibited proliferation, migration and invasion of LUAD by sponging miR-22-5p and further restoring CDC14A. This novel regulatory network might provide us with promising diagnostic and therapeutic target in LUAD treatment.


Sign in / Sign up

Export Citation Format

Share Document