scholarly journals Exploring the mRNA expression level of RELN in peripheral blood of schizophrenia patients before and after antipsychotic treatment

2020 ◽  
Author(s):  
Jiajun Yin ◽  
Yana Lu ◽  
Shui Yu ◽  
Zhanzhan Dai ◽  
Fuquan Zhang ◽  
...  

Abstract Background: The Reelin (RELN) gene encodes the protein reelin, which is a large extracellular matrix glycoprotein that plays a key role in brain development. Additionally, this protein may be involved in memory formation, neurotransmission, and synaptic plasticity, which have been shown to be disrupted in schizophrenia (SCZ). A decreasing trend in the expression of RELN mRNA in the brain and peripheral blood of SCZ patients has been observed. There is a need to determine whether changes in RELN mRNA expression in SCZ patients are the result of long-term antipsychotic treatment rather than the etiological characteristics of schizophrenia. The expression levels of RELN mRNA in the peripheral blood of 48 healthy controls and 30 SCZ patients before and after 12-weeks of treatment were measured using quantitative real-time PCR.Results: The expression levels of RELN mRNA in the SCZ group were significantly lower than that of healthy controls; however, after 12-weeks of antipsychotic treatment, RELN mRNA levels were significantly increased in the SCZ group.Conclusion: The up-regulation of RELN mRNA expression was current in SCZ patients after antipsychotic treatment, suggesting that the changes in RELN mRNA expression were related to the effect of the antipsychotic treatment.

Hereditas ◽  
2020 ◽  
Vol 157 (1) ◽  
Author(s):  
Jiajun Yin ◽  
Yana Lu ◽  
Shui Yu ◽  
Zhanzhan Dai ◽  
Fuquan Zhang ◽  
...  

Abstract Background The Reelin (RELN) gene encodes the protein reelin, which is a large extracellular matrix glycoprotein that plays a key role in brain development. Additionally, this protein may be involved in memory formation, neurotransmission, and synaptic plasticity, which have been shown to be disrupted in schizophrenia (SCZ). A decreasing trend in the expression of RELN mRNA in the brain and peripheral blood of SCZ patients has been observed. There is a need to determine whether changes in RELN mRNA expression in SCZ patients are the result of long-term antipsychotic treatment rather than the etiological characteristics of schizophrenia. The expression levels of RELN mRNA in the peripheral blood of 48 healthy controls and 30 SCZ patients before and after 12-weeks of treatment were measured using quantitative real-time PCR. Results The expression levels of RELN mRNA in the SCZ group were significantly lower than that of healthy controls; however, after 12-weeks of antipsychotic treatment, RELN mRNA levels were significantly increased in the SCZ group. Conclusion The up-regulation of RELN mRNA expression was current in SCZ patients after antipsychotic treatment, suggesting that the changes in RELN mRNA expression were related to the effect of the antipsychotic treatment.


2020 ◽  
Author(s):  
Jiajun Yin ◽  
Yana Lu ◽  
Shui Yu ◽  
Zhanzhan Dai ◽  
Fuquan Zhang ◽  
...  

Abstract Background: The Reelin (RELN) gene encodes the protein reelin, which is a large extracellular matrix glycoprotein that plays a key role in brain development. Additionally, this protein may be involved in memory formation, neurotransmission, and synaptic plasticity, which have been shown to be disrupted in schizophrenia (SCZ). A decreasing trend in the expression of RELN mRNA in the brain and peripheral blood of SCZ patients has been observed. There is a need to determine whether changes in RELN mRNA expression in SCZ patients are the result of long-term antipsychotic treatment rather than the etiological characteristics of schizophrenia. The expression levels of RELN mRNA in the peripheral blood of 48 healthy controls and 30 SCZ patients before and after 12-weeks of treatment were measured using quantitative real-time PCR. Results: The expression levels of RELN mRNA in the SCZ group were significantly lower than that of healthy controls; however, after 12-weeks of antipsychotic treatment, RELN mRNA levels were significantly increased in the SCZ group.Conclusion: The up-regulation of RELN mRNA expression was concurrent with the improvement of symptoms in SCZ patients after antipsychotic treatment, suggesting that the changes in RELN mRNA expression were related to the effect of the antipsychotic treatment.


2020 ◽  
Author(s):  
Jiajun Yin ◽  
Yana Lu ◽  
Shui Yu ◽  
Zhanzhan Dai ◽  
Fuquan Zhang ◽  
...  

Abstract Background: The Reelin (RELN) gene encodes the protein reelin, which is a large extracellular matrix glycoprotein that plays a key role in brain development. Additionally, this protein may be involved in memory formation, neurotransmission, and synaptic plasticity, which have been shown to be disrupted in schizophrenia (SCZ). A decreasing trend in the expression of RELN mRNA in the brain and peripheral blood of SCZ patients has been observed. There is a need to determine whether changes in RELN mRNA expression in SCZ patients are the result of long-term antipsychotic treatment rather than the etiological characteristics of schizophrenia. The expression levels of RELN mRNA in the peripheral blood of 48 healthy controls and 30 SCZ patients before and after 12-weeks of treatment were measured using quantitative real-time PCR. Results: The expression levels of RELN mRNA in the SCZ group were significantly lower than that of healthy controls; however, after 12-weeks of antipsychotic treatment, RELN mRNA levels were significantly increased in the SCZ group. Conclusion: The up-regulation of RELN mRNA expression was current in SCZ patients after antipsychotic treatment, suggesting that the changes in RELN mRNA expression were related to the effect of the antipsychotic treatment.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaoqian Fu ◽  
Guofu Zhang ◽  
Yansong Liu ◽  
Ling Zhang ◽  
Fuquan Zhang ◽  
...  

Abstract Background Schizophrenia is a severe, heritable, and refractory psychiatric disorder. Several studies have shown that the disrupted in schizophrenia 1 (DISC1) gene is closely associated with schizophrenia by its role in neuronal morphology, synaptic function, brain development, and dopamine homeostasis etc. This study intended to investigate the expression levels of DISC1 gene in schizophrenia patients compared with healthy controls, and the expression variation of DISC1 gene before and after antipsychotic treatment in schizophrenia patients. Methods In this study, we compared DISC1 expression levels in blood of 48 healthy controls, and 32 schizophrenia patients before and after 12 weeks of antipsychotic treatment using real-time quantitative PCR (RT-qPCR) analysis. Results The expression levels of DISC1 gene in peripheral blood mononuclear cells of schizophrenia patients before antipsychotic treatment were higher than those in healthy controls (P < 0.01); whereas after antipsychotic treatment, the expression levels of DISC1 gene in peripheral blood mononuclear cells of schizophrenia patients still remained increased (P < 0.01). Conclusions Our study provided further support for the involvement of DISC1 in the development of schizophrenia.


2019 ◽  
Vol 46 (3) ◽  
pp. 484-495 ◽  
Author(s):  
Federico E Turkheimer ◽  
Pierluigi Selvaggi ◽  
Mitul A Mehta ◽  
Mattia Veronese ◽  
Fernando Zelaya ◽  
...  

Abstract The use of antipsychotic medication to manage psychosis, principally in those with a diagnosis of schizophrenia or bipolar disorder, is well established. Antipsychotics are effective in normalizing positive symptoms of psychosis in the short term (delusions, hallucinations and disordered thought). Their long-term use is, however, associated with side effects, including several types of movement (extrapyramidal syndrome, dyskinesia, akathisia), metabolic and cardiac disorders. Furthermore, higher lifetime antipsychotic dose-years may be associated with poorer cognitive performance and blunted affect, although the mechanisms driving the latter associations are not well understood. In this article, we propose a novel model of the long-term effects of antipsychotic administration focusing on the changes in brain metabolic homeostasis induced by the medication. We propose here that the brain metabolic normalization, that occurs in parallel to the normalization of psychotic symptoms following antipsychotic treatment, may not ultimately be sustainable by the cerebral tissue of some patients; these patients may be characterized by already reduced oxidative metabolic capacity and this may push the brain into an unsustainable metabolic envelope resulting in tissue remodeling. To support this perspective, we will review the existing data on the brain metabolic trajectories of patients with a diagnosis of schizophrenia as indexed using available neuroimaging tools before and after use of medication. We will also consider data from pre-clinical studies to provide mechanistic support for our model.


2020 ◽  
Vol 17 (7) ◽  
pp. 616-625
Author(s):  
Nattaporn Pakpian ◽  
Kamonrat Phopin ◽  
Kuntida Kitidee ◽  
Piyarat Govitrapong ◽  
Prapimpun Wongchitrat

Background: Mitochondrial dysfunction is a pathological feature that manifests early in the brains of patients with Alzheimer’s Disease (AD). The disruption of mitochondrial dynamics contributes to mitochondrial morphological and functional impairments. Our previous study demonstrated that the expression of genes involved in amyloid beta generation was altered in the peripheral blood of AD patients. Objective: The aim of this study was to further investigate the relative levels of mitochondrial genes involved in mitochondrial dynamics, including mitochondrial fission and fusion, and mitophagy in peripheral blood samples from patients with AD compared to healthy controls. Methods: The mRNA levels were analyzed by real-time polymerase chain reaction. Gene expression profiles were assessed in relation to cognitive performance. Results: Significant changes were observed in the mRNA expression levels of fission-related genes; Fission1 (FIS1) levels in AD subjects were significantly higher than those in healthy controls, whereas Dynamin- related protein 1 (DRP1) expression was significantly lower in AD subjects. The levels of the mitophagy-related genes, PTEN-induced kinase 1 (PINK1) and microtubule-associated protein 1 light chain 3 (LC3), were significantly increased in AD subjects and elderly controls compared to healthy young controls. The mRNA levels of Parkin (PARK2) were significantly decreased in AD. Correlations were found between the expression levels of FIS1, DRP1 and PARK2 and cognitive performance scores. Conclusion: Alterations in mitochondrial dynamics in the blood may reflect impairments in mitochondrial functions in the central and peripheral tissues of AD patients. Mitochondrial fission, together with mitophagy gene profiles, might be potential considerations for the future development of blood-based biomarkers for AD.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yao Fan ◽  
Jun Gao ◽  
Yinghui Li ◽  
Xuefei Chen ◽  
Ting Zhang ◽  
...  

Objective: Abnormal lipid metabolism has a close link to the pathophysiology of schizophrenia (SZ). This study mainly aimed to evaluate the association of variants at apolipoprotein A1 (APOA1) and APOA4 with SZ in a Chinese Han population.Methods: The rs5072 of APOA1 and rs1268354 of APOA4 were examined in a case–control study involving 2,680 patients with SZ from the hospital and 2,223 healthy controls screened by physical examination from the community population. The association was estimated with the odds ratio (OR) and 95% confidence intervals (95% CIs) by logistic regression. The APOA1 and APOA4 messenger RNA (mRNA) in peripheral blood leukocytes were measured by real-time PCR and compared between SZ cases and controls. Serum apoA1 levels were detected by turbidimetric inhibition immunoassay and high-density lipoprotein cholesterol (HDL-C) levels were detected by the homogeneous method.Results: Both of the rs5072 of APOA1 and rs1268354 of APOA4 had statistically significant associations with SZ. After adjustment for age and sex, ORs (95% CIs) of the additive model of rs5072 and rs1268354 were 0.82 (0.75–0.90) and 1.120 (1.03–1.23), and p-values were 3.22 × 10−5 and 0.011, respectively. The association of rs5072 with SZ still presented statistical significance even after Bonferroni correction (p-value×6). SZ patients during the episode presented lower levels of apoA1, HDL-C, mRNA of APOA1 common variants and transcript variant 4, and APOA4 mRNA than controls (p &lt; 0.01) while SZ patients in remission showed a significantly decreased APOA1 transcript variant 3 expression level and increased APOA4 mRNA expression level (p &lt; 0.01). mRNA expression levels of APOA1 transcript variant 4 significantly increased with the variations of rs5072 in SZ during the episode (ptrend = 0.017). After the SZ patients received an average of 27.50 ± 9.90 days of antipsychotic treatment, the median (interquartile) of serum apoA1 in the SZ episode significantly increased from 1.03 (1.00.1.20) g/L to 1.08 (1.00.1.22) g/L with the p-value of 0.044.Conclusion: Our findings suggest that the genetic variations of APOA1 rs5072 and APOA4 rs1268354 contribute to the susceptibility of SZ, and the expression levels of APOA1 and APOA4 mRNA of peripheral blood leukocytes decreased in SZ patients during the episode while APOA4 increased after antipsychotic treatment.


1996 ◽  
Vol 149 (2) ◽  
pp. 335-340 ◽  
Author(s):  
T Sugiyama ◽  
H Minoura ◽  
N Toyoda ◽  
K Sakaguchi ◽  
M Tanaka ◽  
...  

Abstract Prolactin receptor (PRL-R) mRNA expression levels in the female rat brain (cerebrum) during pup contact stimulation were determined by the reverse transcription-PCR method. The high expression levels of long form PRL-R mRNA found in the brain of lactating rats were markedly reduced by removal of pups, and long form PRL-R mRNA levels were recovered by resumption of pup contact. Interestingly, pup contact stimuli of nulliparous virgin rats also markedly induced long form but not short form PRL-R mRNA expression in the brain in 1·3 days, together with the expression of maternal behaviour. In ovariectomized (OVX) or hypophysectomized (HYPOX) virgin rats, or in OVX plus HYPOX virgin rats, however, brain long form PRL-R mRNA was not significantly induced by pup contact stimuli for as long as 7 days, while maternal behaviour was fully expressed in these rats after 7 days of pup contact. The in situ hybridization experiments revealed that the long form PRL-R mRNA induced in virgin rats in contact with pups or in lactating rats was localized in the epithelial cells of the choroid plexus. No significant increase in mRNA was detected in other regions of the brain, such as the hypothalamus or cortex, in these maternal female rats. These results suggest that pup contact induces the expression of long form PRL-R mRNA in the choroid plexus of the brain in the presence of female sex steroid and pituitary hormones for the rapid expression of maternal behaviour. Our studies also suggested that maternal behaviour can be expressed in OVX or HYPOX rats after exposure to pups for 7 days without any significant increase in brain PRL-R mRNA expression. Journal of Endocrinology (1996) 149, 335–340


2013 ◽  
Vol 709 ◽  
pp. 848-851
Author(s):  
Ke Xin Sun ◽  
Chun Hui Li ◽  
Yan Li ◽  
Su Hong Guo ◽  
Yi Ju Hou

To investigate DcR3 mRNA levels of peripheral blood monocytes in rheumatoid arthritis(RA),and analyzes the correlation between the DcR3 Levels of Peripheral Blood and the Disease Activity in Rheumatoid Arthritis Patient. The expression levels of DcR3 mRNA in peripheral Blood monocytes of 82 RA patients and 53 healthy controls were detected by real-time polymerase chain reaction. The expression levels of DcR3 mRNA of active stage in RA patients were higher than that of remission stage in RA patients and healthy controls(P<0.05); The correlationships between DcR3 mRNA levels and active renal score (DAS28)show positive correlation. The expression levels of peripheral blood DcR3 does significant increase in RA active patients and it is closely related with the activity of the disease which suggesting that DcR3 migh involved in the pathological process.


2017 ◽  
Vol 13 (8) ◽  
pp. 20170240 ◽  
Author(s):  
Floriana Lai ◽  
Cathrine E. Fagernes ◽  
Nicholas J. Bernier ◽  
Gabrielle M. Miller ◽  
Philip L. Munday ◽  
...  

The continuous increase of anthropogenic CO 2 in the atmosphere resulting in ocean acidification has been reported to affect brain function in some fishes. During adulthood, cell proliferation is fundamental for fish brain growth and for it to adapt in response to external stimuli, such as environmental changes. Here we report the first expression study of genes regulating neurogenesis and neuroplasticity in brains of three-spined stickleback ( Gasterosteus aculeatus ), cinnamon anemonefish ( Amphiprion melanopus ) and spiny damselfish ( Acanthochromis polyacanthus ) exposed to elevated CO 2 . The mRNA expression levels of the neurogenic differentiation factor (NeuroD) and doublecortin (DCX) were upregulated in three-spined stickleback exposed to high-CO 2 compared with controls, while no changes were detected in the other species. The mRNA expression levels of the proliferating cell nuclear antigen (PCNA) and the brain-derived neurotrophic factor (BDNF) remained unaffected in the high-CO 2 exposed groups compared to the control in all three species. These results indicate a species-specific regulation of genes involved in neurogenesis in response to elevated ambient CO 2 levels. The higher expression of NeuroD and DCX mRNA transcripts in the brain of high-CO 2 –exposed three-spined stickleback, together with the lack of effects on mRNA levels in cinnamon anemonefish and spiny damselfish, indicate differences in coping mechanisms among fish in response to the predicted-future CO 2 level.


Sign in / Sign up

Export Citation Format

Share Document