scholarly journals Foliar Arginine Application Improves Tomato Plant Growth, Yield, and Fruit Quality

Author(s):  
Tianqi Wang ◽  
Qingqing Liu ◽  
Nanqi Wang ◽  
Jing Dai ◽  
Qiaofang Lu ◽  
...  

Abstract Tomatoes are important for human health, and there is an urgent need to increase tomato yield and quality worldwide. Arginine is proven to be beneficial for crop storage quality and stress resistance in plants; however, its effects on tomato production and quality have not been fully investigated. This study demonstrated the effects of spray application of arginine on tomato growth, yield, and quality. Arginine treatment significantly increased the nitrogen concentration in the aboveground tomato plant parts and fruit, net photosynthetic rate, stem diameter, dry mass weight, and root activity. It is suggested that increased nitrogen accumulation following arginine application is mainly due to arginine uptake as organic nitrogen, higher expression of the LeNRT1.1 gene, and increased root activity. The increased nitrogen levels improved photosynthesis and promoted tomato plant growth. Moreover, foliar arginine application enhanced fruit size, weight, and yield. Arginine treatment had a positive effect on tomato quality as indicated by the concentrations of lycopene, vitamin C, soluble solid, soluble sugar, and titratable acids, and the sugar-acid ratio. Arginine application has potential to improve tomato production by regulating plant development and enhancing fruit yield and quality.

Author(s):  
Tianqi Wang ◽  
Qingqing Liu ◽  
Nanqi Wang ◽  
Jing Dai ◽  
Qiaofang Lu ◽  
...  

2011 ◽  
Vol 29 (4) ◽  
pp. 516-519 ◽  
Author(s):  
Jerônimo L Andriolo ◽  
Lígia Erpen ◽  
Francieli L Cardoso ◽  
Carine Cocco ◽  
Gustavo S Casagrande ◽  
...  

In soilless grown strawberry crops, the nitrogen concentration of the nutrient solution affects plant growth and fruit yield and quality. The present research was conducted to determine the effect of nitrogen concentration in the nutrient solution on plant growth and development and fruit yield and quality of this crop. Treatments consisted of five nutrient solutions at nitrogen concentrations of 6.5 (T1), 8.0 (T2), 9.5 (T3), 11.0 (T4) and 12.5 (T5) mmol L-1, in an entirely randomised experimental design with four replications. Ripe fruit yield was determined during the harvest period from June 6th to November 27th, 2009. Number of leaves, shoot and root dry mass and crown diameter were determined at the later date. Number of leaves, shoot and root dry mass and crown diameter decreased by effect of increasing N concentrations in the nutrient solution. Fruit yield and fruit size fitted a polynomial model, with maximum values at 8.9 mmol N L-1. The N concentration used for the strawberry crop in soilless growing systems can be reduced to 8.9 mmol L-1 without any reduction in fruit yield.


2016 ◽  
Vol 28 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Elżbieta Jędrszczyk ◽  
Anna M. Ambroszczyk

AbstractThe effect of different methods of NANO-GRO®application on tomato plant growth and yield and its quality was determined. Four treatments were used: soaking seeds with NANO-GRO®, plants spraying, double application: soaking seeds + plants spraying and a control without NANO-GRO®. The cultivar Mieszko F1was used for the study. A significant influence of NANO-GRO®application method on tomato plant growth, yield and quality was observed. Pre-sowing application positively influenced plant height and the thickness of the stems. The highest total and marketable yield was observed in plants whose seeds were soaked with NANO-GRO®(respectively 87.02 and 53.13 t ha−1) and in those with double application (respectively 73.48 and 45.67 t ha−1). The lowest marketable yield was found in the plants from the control (37.01 t ha−1). The highest lycopene content compared to the control was measured in fruits from plants sprayed with NANO-GRO®.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 545d-545
Author(s):  
D.I. Leskovar ◽  
J.C. Ward ◽  
R.W. Sprague ◽  
A. Meiri

Water pumping restrictions of high-quality irrigation water from underground aquifers is affecting vegetable production in Southwest Texas. There is a need to develop efficient deficit-irrigation strategies to minimize irrigation inputs and maintain crop profitability. Our objective was to determine how growth, yield, and quality of cantaloupe (Cucumis melo L. cv. `Caravelle') are affected by irrigation systems with varying input levels, including drip depth position and polyethylene mulch. Stand establishment systems used were containerized transplants and direct seeding. Field experiments were conducted on a Uvalde silty clay loam soil. Marketable yields increased in the order of pre-irrigation followed by: dry-land conditions, furrow/no-mulch, furrow/mulch, drip-surface (0 cm depth)/mulch, drip-subsurface (10-cm depth)/mulch, and drip-subsurface (30 cm depth)/mulch. Pooled across all drip depth treatments, plants on drip had higher water use efficiency than plants on furrow/no-mulch or furrow/mulch systems. Transplants with drip-surface produced 75% higher total and fruit size No. 9 yields than drip-subsurface (10- or 30-cm depth) during the first harvest, but total yields were unaffected by drip tape position. About similar trends were measured in a subsequent study except for a significant irrigation system (stand establishment interaction for yield. Total yields were highest for transplants on drip-subsurface (10-cm depth) and direct seeded plants on drip-subsurface (10 and 30 cm depth) with mulch.


Author(s):  
Ashish Kumar Dubey ◽  
Devi Singh ◽  
Pranjal Singh Rajput ◽  
Yogesh Kumar ◽  
Ajay Kumar Verma ◽  
...  

Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 72
Author(s):  
Mazhar Abbas ◽  
Faisal Imran ◽  
Rashid Iqbal Khan ◽  
Muhammad Zafar-ul-Hye ◽  
Tariq Rafique ◽  
...  

Bitter gourd is one of the important cucurbits and highly liked among both farmers and consumers due to its high net return and nutritional value. However, being monoecious, it exhibits substantial variation in flower bearing pattern. Plant growth regulators (PGRs) are known to influence crop phenology while gibberellic acid (GA3) is one of the most prominent PGRs that influence cucurbits phenology. Therefore, a field trial was conducted at University of Agriculture Faisalabad to evaluate the impact of a commercial product of gibberellic acid (GA3) on growth, yield and quality attributes of two bitter gourd (Momordica charantiaL.) cultivars. We used five different concentrations (0.4 g, 0.6 g, 0.8 g, 1.0 g, and 1.2 g per litre) of commercial GA3 product (Gibberex, 10% Gibberellic acid). Results showed that a higher concentration of gibberex (1.0 and 1.20 g L−1 water) enhanced the petiole length, intermodal length, and yield of bitter gourd cultivars over control in Golu hybrid and Faisalabad Long. A significant decrease in the enzyme superoxidase dismutase, peroxidase, and catalase activities were observed with an increasing concentration of gibberex (1.0 and 1.20 gL−1 water) as compared to control. These results indicate that the exogenous application of gibberex at a higher concentration (1.2 g L−1) has a dual action in bitter gourd plant: i) it enhances the plant growth and yield, and ii) it also influenced the antioxidant enzyme activities in fruits. These findings may have a meaningful, practical use for farmers involved in agriculture and horticulture.


1989 ◽  
Vol 25 (3) ◽  
pp. 409-415 ◽  
Author(s):  
A. M. Ali

SUMMARYThe effects of planting potato tubers on four different sides of two ridge orientations was investigated. Soil temperature was coolest on the northern side, followed by the western, eastern and southern sides. Fifty percent emergence took place in 24, 42 and 49 days for tubers planted on the northern, western and eastern sides, respectively. Only 22% of tubers planted on the southern side emerged. The best yield and quality was obtained by planting on the northern side, followed successively by the eastern, western and southern sides of the ridge.


Author(s):  
Zahida Rashid ◽  
Tanveer Ahmad Ahngar ◽  
B. Sabiya ◽  
N. Sabina ◽  
N. S. Khuroo ◽  
...  

A field experiment was conducted at Dry land Agricultural Research Station, Rangreth, Srinagar, SKUAST-K in Kharif 2020 to study the effect of Plant Growth Regulators and micronutrients on growth, yield and quality of sorghum. The objective of the study was to assess the effect of Plant Growth Regulators and micronutrients on herbage yield and quality. The treatments included; T1: Tricontanol 10 ppm at 30 DAS (foliar spray), T2: Salicylic acid 100 ppm at 30 DAS (foliar spray), T3: 5 kg Zn/ha soil application, T4: 2 kg B/ha soil application, T5: 5 kg Zn + 2 kg B/ha soil application, T6: 5 kg Zn/ha (soil application ) + Triacontanol 10 ppm at 30 DAS (foliar spray), T7: 5 kg Zn/ha (soil application) + salicylic acid 100 ppm at 30 DAS (foliar spray), T8: 2 kg B/ha (soil application) + Triacontanol 10 ppm at 30 DAS (foliar spray), T9: 2 kg B/ha (soil application )+ salicylic acid 100 ppm at 30 DAS (foliar spray), T10: 5 kg Zn + 2 kg B/ha (soil application) + Triacontanol 10 ppm at 30 DAS (foliar spray), T11: 5 kg Zn + 2 kg B/ha (soil application) + salicylic acid 100 ppm at 30 DAS (foliar spray) and T12: Water spray at the time of PGR application. Zn and B were applied at the time of sowing in the soil. The crop was raised with recommended package of practices. In treatments, where zinc was not a treatment, an amount of sulphur through gypsum equivalent to sulphate supplied with 5 kg ZnSO4 was applied to compensate. The crop was sown in 30.0 cm apart lines. The trial was laid out in Randomized Block Design with three replications. The results indicated that all the treatments improved the green fodder yield over control. Among different treatments, T10: 5 kg Zn + 2 kg B/ha soil application + Triacontanol 10 ppm at 30 DAS foliar spray and T11: 5 kg Zn + 2 kg B/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray produced maximum GFY (493.6 and 490.5q/ha) on locational mean basis. It was significantly superior to other treatments. These treatments improved the green fodder yields by 35.0 % and 34.2 %, respectively, over control (spray of water). In terms of dry matter, similar trend was noted and the improvement with T10 and T11 was to the tune of 36.8 % and 41.0 % over control. Tricontanol 10 ppm at 30 DAS (foliar spray) (T1) improved the green fodder yield and dry fodder yield by 13.6% and 14.3 % respectively over T12Water spray at the time of Plant Growth Regulator application. Similarly spray of T2: Salicylic acid 100 ppm at 30 DAS (foliar spray) improved the green fodder yield and dry fodder yield by 14.4% and 15.4% respectively over T12Water spray at the time of Plant Growth Regulator application. Similar trend was observed with respect to quality parameters (crude protein content and crude protein yield) of sorghum.


Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 289
Author(s):  
Jiaohong Li ◽  
Zhenxiang Guo ◽  
Yue Luo ◽  
Xiaomao Wu ◽  
Huaming An

Powdery mildew caused by Sphaerotheca sp. is the most serious disease of Rosa roxburghii cultivation. In this study, the foliar application of chitosan induced Rosa roxburghii Tratt. against Sphaerotheca sp. and its effects on the disease resistance, growth, yield, and quality of R. roxburghii were investigated. The results show that the foliar application of 1.0%~1.5% chitosan could effectively control Sphaerotheca sp. of R. roxburghii with the inducing control efficacy of 69.30%~72.87%. The foliar application of 1.0%~1.5% chitosan significantly (p < 0.01) increased proline, soluble sugar, flavonoids, superoxide dismutase (SOD), and polyphenoloxidase (POD) activities of the R. roxburghii leaf and decreased its malonaldehyde (MDA), as well as reliably enhanced its photosynthetic rate and chlorophyll. Moreover, the foliar application of 1.0%~1.5% chitosan notably improved single fruit weight, yield, vitamin C, soluble solid, soluble sugar, total acidity, soluble protein, flavonoids, and SOD activity of R. roxburghii fruits. This study highlights that chitosan can be used as an ideal, efficient, safe, and economical inductor for controlling powdery mildew of R. Roxburgh and enhancing its resistance, growth, yield, and quality.


Sign in / Sign up

Export Citation Format

Share Document