scholarly journals Use of An In Silico Knowledge Discovery Approach To Translate Mechanistic Studies of Silver Nanoparticles-Induced Toxicity From In Vitro To In Vivo

Author(s):  
Bin-Hsu Mao ◽  
Yi-Kai Luo ◽  
Bour-Jr W ◽  
Fong-Yu Cheng ◽  
Yu-Hsuan Lee ◽  
...  

Abstract Background: Silver nanoparticles (AgNPs) are considered a double-edged sword that demonstrates beneficial and harmful effects depending on their dimensions and surface coating types. However, mechanistic reports regarding size- and coating-dependent effects of AgNPs remain inadequate in vitro and in vivo. In keeping with the 3Rs principles, we adopted an in silico decision tree-based knowledge-discovery-in-databases process to offer a multilayered view of AgNPs toxicity and translate our research from cell-based phenomenological observations to further in vitro and in vivo mechanistic explorations.Results: Cell viability assessment results was used to create a tree model for predicting toxicity evoked by four AgNP types: SCS, LCS, SAS, and LAS. This model ranked toxicity-relevant parameters in the order: dose > cell type > AgNP type ≥ exposure time. As suggested by the model, we chose a less responsive cell line to conduct further investigations. LCS among others was more capable of comprising viability of this cell line and could trigger higher levels of apoptosis and autophagy at a subcytotoxic dose. Even though at a cytotoxic dose, it was yet unable to evoke necrosis. Longer exposure to a noncytotoxic dose of LCS induced G2/M cell cycle arrest and senescence rather than eliciting apoptosis and autophagy. After a single intraperitoneal injection, SCS was found to be more toxic to mice than SAS, both of which could be deposited in various target organs (e.g., spleen, liver, and kidneys). Morphological observation, together with serum biochemical and histological analyses, indicated that AgNPs could produce pancreatic toxicity, apart from leading to hepatic inflammation. Conclusions: Our integrated in vitro, in silico, and in vivo study demonstrated that AgNPs could exert toxicity in dose-, cell/organ type- and particle type-dependent manners. More importantly, a single injection of lethal-dose AgNPs (i.e., SCS and SAS) could incur severe damage to pancreas and raise blood glucose levels at the early phase of exposure.

2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Bin-Hsu Mao ◽  
Yi-Kai Luo ◽  
Bour-Jr Wang ◽  
Chun-Wan Chen ◽  
Fong-Yu Cheng ◽  
...  

Abstract Background Silver nanoparticles (AgNPs) are considered a double-edged sword that demonstrates beneficial and harmful effects depending on their dimensions and surface coating types. However, mechanistic understanding of the size- and coating-dependent effects of AgNPs in vitro and in vivo remains elusive. We adopted an in silico decision tree-based knowledge-discovery-in-databases process to prioritize the factors affecting the toxic potential of AgNPs, which included exposure dose, cell type and AgNP type (i.e., size and surface coating), and exposure time. This approach also contributed to effective knowledge integration between cell-based phenomenological observations and in vitro/in vivo mechanistic explorations. Results The consolidated cell viability assessment results were used to create a tree model for generalizing cytotoxic behavior of the four AgNP types: SCS, LCS, SAS, and LAS. The model ranked the toxicity-related parameters in the following order of importance: exposure dose > cell type > particle size > exposure time ≥ surface coating. Mechanistically, larger AgNPs appeared to provoke greater levels of autophagy in vitro, which occurred during the earlier phase of both subcytotoxic and cytotoxic exposures. Furthermore, apoptosis rather than necrosis majorly accounted for compromised cell survival over the above dosage range. Intriguingly, exposure to non-cytotoxic doses of AgNPs induced G2/M cell cycle arrest and senescence instead. At the organismal level, SCS following a single intraperitoneal injection was found more toxic to BALB/c mice as compared to SAS. Both particles could be deposited in various target organs (e.g., spleen, liver, and kidneys). Morphological observation, along with serum biochemical and histological analyses, indicated that AgNPs could produce pancreatic toxicity, apart from leading to hepatic inflammation. Conclusions Our integrated in vitro, in silico, and in vivo study revealed that AgNPs exerted toxicity in dose-, cell/organ type- and particle type-dependent manners. More importantly, a single injection of lethal-dose AgNPs (i.e., SCS and SAS) could incur severe damage to pancreas and raise blood glucose levels at the early phase of exposure.


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1031 ◽  
Author(s):  
Sameh S. Elhady ◽  
Enas E. Eltamany ◽  
Amera E. Shaaban ◽  
Alaa A. Bagalagel ◽  
Yosra A. Muhammad ◽  
...  

Phytochemical study of Chiliadenus montanus aerial parts afforded six compounds; Intermedeol (1), 5α-hydroperoxy-β-eudesmol (2), 5,7-dihydroxy-3,3’,4’-trimethoxyflavone (3), 5,7,4’-trihydroxy-3,6,3’-trimethoxyflavone (jaceidin) (4), eudesm-11,13-ene-1β,4β,7α-triol (5) and 1β,4β,7β,11-tetrahydroxyeudesmane (6). These compounds were identified based on their NMR spectral data. The isolated compounds were tested for their cytotoxicity against liver cancer cell line (HepG2) and breast cancer cell line (MCF-7). Jaceidin flavonoid (4) exhibited the highest cytotoxic effect in vitro. Therefore, both of jaceidin and C. montanus extract were evaluated for their in vivo anti-tumor activity against Ehrlich’s ascites carcinoma (EAC). Compared to control group, jaceidin and C. montanus extract decreased the tumor weight, improved the histological picture of tumor cells, lowered the levels of VEGF and ameliorate the oxidative stress. Molecular docking and in silico studies suggested that jaceidin was a selective inhibitor of VEGF-mediated angiogenesis with excellent membrane permeability and oral bioavailability.


Foods ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 392 ◽  
Author(s):  
Marcos Mateo-Fernández ◽  
Pilar Alves-Martínez ◽  
Mercedes Del Río-Celestino ◽  
Rafael Font ◽  
Tania Merinas-Amo ◽  
...  

Nutraceutical activity of food is analysed to promote the healthy characteristics of diet where additives are highly used. Caramel is one of the most worldwide consumed additives and it is produced by heating natural carbohydrates. The aim of this study was to evaluate the food safety and the possible nutraceutical potential of caramel colour class IV (CAR). For this purpose, in vivo toxicity/antitoxicity, genotoxicity/antigenotoxicity and longevity assays were performed using the Drosophila melanogaster model. In addition, cytotoxicity, internucleosomal DNA fragmentation, single cell gel electrophoresis and methylation status assays were conducted in the in vitro HL-60 human leukaemia cell line. Our results reported that CAR was neither toxic nor genotoxic and showed antigenotoxic effects in Drosophila. Furthermore, CAR induced cytotoxicity and hipomethylated sat-α repetitive element using HL-60 cell line. In conclusion, the food safety of CAR was demonstrated, since Lethal Dose 50 (LD50) was not reached in toxicity assay and any of the tested concentrations induced mutation rates higher than that of the concurrent control in D. melanogaster. On the other hand, CAR protected DNA from oxidative stress provided by hydrogen peroxide in Drosophila. Moreover, CAR showed chemopreventive activity and modified the methylation status of HL-60 cell line. Nevertheless, much more information about the mechanisms of gene therapies related to epigenetic modulation by food is necessary.


2007 ◽  
Vol 51 (7) ◽  
pp. 2346-2350 ◽  
Author(s):  
Valter F. de Andrade-Neto ◽  
Tito da Silva ◽  
Lucia M. Xavier Lopes ◽  
Virgílio E. do Rosário ◽  
Fernando de Pilla Varotti ◽  
...  

ABSTRACT Extracts from Holostylis reniformis were tested in vivo against Plasmodium berghei and in vitro against a chloroquine-resistant strain of Plasmodium falciparum. The hexane extract of the roots was the most active, causing 67% reduction of parasitemia in vivo. From this extract, six lignans, including a new (7′R,8S,8′S)-3′,4′-methylenedioxy-4,5-dimethoxy-2,7′-cyclolignan-7-one, were isolated and tested in vitro against P. falciparum. The three most active lignans showed 50% inhibitor concentrations of ≤0.32 μM. An evaluation of minimum lethal dose (30%) values showed low toxicity for these lignans in a hepatic cell line (Hep G2A16). Therefore, these compounds are potential candidates for the development of antimalarial drugs.


Author(s):  
Nurgozhin T. ◽  
Sergazy S. H. ◽  
Adilgozhina G. ◽  
Gulyayev A. ◽  
Shulgau Z. ◽  
...  

Objective:This study investigates the hepatoprotective effect and the antioxidant role of polyphenol concentrate in the experimental model of carbon tetrachloride (CCl4) induced toxicity. Methods: Antioxidant activity of Cabernet Sauvignon grape polyphenol were evaluated by radical scavenging of 1,1-diphenyl-2-picryl hydrazyl radical (DPPH), 2,2’-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS.+). In addition, the effects of polyphenol concentrate on the survival of Wistar rats in the toxicity model, was also investigated. The polyphenol concentrate was administered for 5 five days prior to injection of carbon tetrachloride in a sub-lethal dose of 300 mg/kg of animal body weight in order to perform histological examinations of the liver and kidney, and detect the levels of AST, ALT and bilirubin. Results: Administration of polyphenol concentrate increased animal survival in the experimental model. Moreover, the intragastric administration of polyphenol concentrate prior to the initiation of the experimental model of toxicity, which was caused by a sub-lethal CCl4 dose, reduced morphological injuries in the liver and kidney, decreased the AST and ALT levels of the blood serum. Discussion and conclusion: Our data demonstrate that polyphenol concentrate possesses an antioxidant potential both in vitro and in vivo by reducing antioxidant stress that was caused by CCl4 administration into rats.


2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


Sign in / Sign up

Export Citation Format

Share Document