scholarly journals Transcriptome analysis reveals major transcriptional changes during regrowth after mowing of red clover (Trifolium pratense)

2020 ◽  
Author(s):  
Denise B Herbert ◽  
Thomas Gross ◽  
Oliver Rupp ◽  
Annette Becker

Abstract BackgroundRed clover (Trifolium pratense) is globally used as a fodder plant due its high nutritional value and soil improving qualities. In response to mowing, red clover exhibits specific morphological traits to compensate the loss of biomass. The morphological reaction is well described, but the underlying molecular mechanisms and its role for plants grown in the field are unclear. ResultsHere, we characterize the global transcriptional response to mowing of red clover by comparing plants grown under greenhouse conditions with plants growing on agriculturally used fields. Unexpectedly, we found that biotic and abiotic stress related changes of plants grown in the field overlay their regrowth related transcriptional changes and characterized transcription related protein families involved in these processes. Further, we can show that gibberellins, among other phytohormones, also contribute to the developmental processes related to regrowth after biomass-loss. ConclusionsOur findings show that massive biomass loss triggers less transcriptional changes in field grown plants than their struggle with biotic and abiotic stresses and that gibberellins also play a role in the developmental program related to regrowth after mowing in red clover. Our results provide first insights into the physiological and developmental processes of mowing on red clover and may serve as a base for red clover yield improvement.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Denise Brigitte Herbert ◽  
Thomas Gross ◽  
Oliver Rupp ◽  
Annette Becker

Abstract Background Red clover (Trifolium pratense) is globally used as a fodder plant due its high nutritional value and soil improving qualities. In response to mowing, red clover exhibits specific morphological traits to compensate the loss of biomass. The morphological reaction is well described, but the underlying molecular mechanisms and its role for plants grown in the field are unclear. Results Here, we characterize the global transcriptional response to mowing of red clover by comparing plants grown under greenhouse conditions with plants growing on agriculturally used fields. Unexpectedly, we found that biotic and abiotic stress related changes of plants grown in the field overlay their regrowth related transcriptional changes and characterized transcription related protein families involved in these processes. Further, we can show that gibberellins, among other phytohormones, also contribute to the developmental processes related to regrowth after biomass-loss. Conclusions Our findings show that massive biomass loss triggers less transcriptional changes in field grown plants than their struggle with biotic and abiotic stresses and that gibberellins also play a role in the developmental program related to regrowth after mowing in red clover. Our results provide first insights into the physiological and developmental processes of mowing on red clover and may serve as a base for red clover yield improvement.


2019 ◽  
Author(s):  
Denise Brigitte Herbert ◽  
Thomas Gross ◽  
Oliver Rupp ◽  
Annette Becker

AbstractRed clover (Trifolium pratense) is used worldwide as a fodder plant due its high nutritional value. In response to mowing, red clover exhibits specific morphological traits to compensate the loss of biomass. The morphological reaction is well described, but knowledge of the underlying molecular mechanisms are still lacking. Here we characterize the molecular genetic response to mowing of red clover by using comparative transcriptomics in greenhouse conditions and agriculturally used field. The analysis of mown and control plants revealed candidate genes possibly regulating crucial steps of the genetic network governing the regrowth reaction. In addition, multiple identified gibberellic acid (GA) related genes suggest a major role for GA in establishing the regrowth morphology of red clover. Mown red clover plants showing this regrowth morphology were partially “rescued” by exogenous GA application, demonstrating the influence of GA during regrowth. Our findings provide insights into the physiological and genetic processes of mowing red clover, to serve as a base for red clover yield improvement.


Microbiology ◽  
2020 ◽  
Vol 166 (10) ◽  
pp. 936-946 ◽  
Author(s):  
A. Castillo-Castañeda ◽  
S. J. Cañas-Duarte ◽  
M. Guevara-Suarez ◽  
J. Guarro ◽  
S. Restrepo ◽  
...  

Some species of fusaria are well-known pathogens of humans, animals and plants. Fusarium oxysporum and Neocosmospora solani (formerly Fusarium solani) cause human infections that range from onychomycosis or keratitis to severe disseminated infections. In general, these infections are difficult to treat due to poor therapeutic responses in immunocompromised patients. Despite that, little is known about the molecular mechanisms and transcriptional changes responsible for the antifungal resistance in fusaria. To shed light on the transcriptional response to antifungals, we carried out the first reported high-throughput RNA-seq analysis for F. oxysporum and N. solani that had been exposed to amphotericin B (AMB) and posaconazole (PSC). We detected significant differences between the transcriptional profiles of the two species and we found that some oxidation-reduction, metabolic, cellular and transport processes were regulated differentially by both fungi. The same was found with several genes from the ergosterol synthesis, efflux pumps, oxidative stress response and membrane biosynthesis pathways. A significant up-regulation of the C-22 sterol desaturase (ERG5), the sterol 24-C-methyltransferase (ERG6) gene, the glutathione S-transferase (GST) gene and of several members of the major facilitator superfamily (MSF) was demonstrated in this study after treating F. oxysporum with AMB. These results offer a good overview of transcriptional changes after exposure to commonly used antifungals, highlights the genes that are related to resistance mechanisms of these fungi, which will be a valuable tool for identifying causes of failure of treatments.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Juliana Benevenuto ◽  
Mehul Bhakta ◽  
Daniel A. Lohr ◽  
Luís Felipe V. Ferrão ◽  
Marcio F. R. Resende ◽  
...  

AbstractHerbicide resistance is a recurrent evolutionary event that has been reported across many species and for all major herbicide modes of action. The synthetic auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has been widely used since the 1940s, however the genetic variation underlying naturally evolving resistance remains largely unknown. In this study, we used populations of the forage legume crop red clover (Trifolium pratense L.) that were recurrently selected for 2,4-D resistance to detect genome-wide signatures of adaptation. Four susceptible and six derived resistant populations were sequenced using a less costly approach by combining targeted sequencing (Capture-Seq) with pooled individuals (Pool-Seq). Genomic signatures of selection were identified using: (i) pairwise allele frequency differences; (ii) genome scan for overly differentiated loci; and (iii) genome‐wide association. Fifty significant SNPs were consistently detected, most located in a single chromosome, which can be useful for marker assisted selection. Additionally, we searched for candidate genes at these genomic regions to gain insights into potential molecular mechanisms underlying 2,4-D resistance. Among the predicted functions of candidate genes, we found some related to the auxin metabolism, response to oxidative stress, and detoxification, which are also promising for further functional validation studies.


Crop Science ◽  
1965 ◽  
Vol 5 (5) ◽  
pp. 425-428 ◽  
Author(s):  
R. J. Bula ◽  
R. G. May ◽  
C. S. Garrison ◽  
C. M. Rincker ◽  
J. G. Dean

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zdenek Andrysik ◽  
Heather Bender ◽  
Matthew D. Galbraith ◽  
Joaquin M. Espinosa

AbstractCellular adaptation to hypoxia is a hallmark of cancer, but the relative contribution of hypoxia-inducible factors (HIFs) versus other oxygen sensors to tumorigenesis is unclear. We employ a multi-omics pipeline including measurements of nascent RNA to characterize transcriptional changes upon acute hypoxia. We identify an immediate early transcriptional response that is strongly dependent on HIF1A and the kinase activity of its cofactor CDK8, includes indirect repression of MYC targets, and is highly conserved across cancer types. HIF1A drives this acute response via conserved high-occupancy enhancers. Genetic screen data indicates that, in normoxia, HIF1A displays strong cell-autonomous tumor suppressive effects through a gene module mediating mTOR inhibition. Conversely, in advanced malignancies, expression of a module of HIF1A targets involved in collagen remodeling is associated with poor prognosis across diverse cancer types. In this work, we provide a valuable resource for investigating context-dependent roles of HIF1A and its targets in cancer biology.


Sign in / Sign up

Export Citation Format

Share Document