scholarly journals Simulation and Experimental Research on Nickel-based Coating Preparedby Jet Electrodeposition at Different Scanning Speeds

Author(s):  
Fu xiuqing ◽  
Jia Li ◽  
Hongwen Zhang ◽  
Jieyu Xian

Abstract In order to study the processing mechanism of jet electrodeposition and explore the influence of different scanning speed on the wear and corrosion resistance of nickel-based coating prepared by jet electrodeposition. The reciprocating scanning motion of the nozzle was used to prepare the nickel-based coating in a specific area. Combined with COMSOL software, the coupling effect of multiple physical fields in the process of jet electrodeposition at different scanning speeds was numerically calculated. Scanning electron microscope, microhardness tester, material surface comprehensive performance tester and electrochemical workstation were used to analyze the surface morphology, section thickness, microhardness, abrasion resistance and corrosion resistance of the nickel-based coating prepared by jet electrodeposition at different scanning speeds. Results show that with the increase of scanning speed, coating grain size decreases, and the coating thickness increases after the first decreases, and microhardness increase after decreases first, abrasion resistance and corrosion resistance were lower after increase first, When the scanning speed reaches 600mm/min, the jet electrodeposited nickel-based coating has the best performance, the maximum thickness reaches 24.83μm, the microhardness reaches 616.86HV, and the wear scar area is 2766.75μm2. In addition, the self-corrosion potential is -0.33V, the self-corrosion current density is 5.16E-7A·cm2, and the equivalent impedance is 4660Ω. The experimental results are consistent with the simulation results, which verifies the accuracy of the simulation model and provides theoretical guidance for further experiments related to jet electrodeposition.

Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 616
Author(s):  
Zhaoyang Song ◽  
Hongwen Zhang ◽  
Xiuqing Fu ◽  
Jinran Lin ◽  
Moqi Shen ◽  
...  

The objective of this study was to improve the surface properties, hardness, wear resistance and electrochemical corrosion resistance of #45 steel. To this end, Ni–P–ZrO2–CeO2 composite coatings were prepared on the surface of #45 steel using the jet-electrodeposition technique by varying the current density from 20 to 60 A/dm2. The effect of current density on the performance of the composite coatings was evaluated. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) were applied to explore the surface topography, elemental composition, hardness and electrochemical corrosion resistance of the composite coatings. The results showed that with the increase in the current density, the hardness, wear resistance, and electrochemical corrosion resistance tends to increase first and then decrease. At a current density of 40 A/dm2, the hardness reached a maximum of 688.9 HV0.1, the corrosion current reached a minimum of 8.2501 × 10−5 A·cm−2, and the corrosion potential reached a maximum of −0.45957 V. At these values, the performance of the composite coatings was optimal.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 639
Author(s):  
Yin Zhang ◽  
Min Kang ◽  
Liang Yao ◽  
Nyambura Samuel Mbugua ◽  
Meifu Jin ◽  
...  

In order to improve the wear and seawater corrosion resistance of metals, Ni–Co–P alloy coatings were fabricated on 45 steel substrates with jet electrodeposition in different jet voltages and temperatures of plating solution. The cross-section morphology, chemical composition, crystalline structure, microhardness, wear, and seawater corrosion resistance of the samples were analyzed and characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), microhardness tester, friction wear tester, and electrochemical workstation, respectively. The results showed that the contents of Co in Ni–Co–P alloy coatings changed with the variation of jet voltages and temperature of plating solution. The content of Co in Ni–Co–P alloy coatings reached a maximum value of 47.46 wt·% when the jet voltage was 12 V and the temperature of the plating solution was 60 °C. The XRD patterns of Ni–Co–P alloy coatings showed that there was an obvious preferred orientation in the (111) plane. With an increase in the jet voltages and temperature of the plating solution, the microhardness of Ni–Co–P alloy coatings first increased and then decreased, with the maximum value obtained being 634.9 HV0.1. When the jet voltage was 12 V and the temperature of the plating solution was 60 °C, the wear scar width of the Ni–Co–P alloy coatings reached a minimum value of 463.4 µm. In addition, the polarization curves in the electrochemical test indicated that the samples deposited at 60 °C and 12 V exhibited the lowest corrosion current density (Icorr) of 1.72 µA/cm2 and highest polarization resistance (Rp) of 19.61 kΩ·cm−2, which indicated that the coatings had better seawater corrosion resistance.


Author(s):  
LiJie Zhang ◽  
Hong Yan ◽  
YongCheng Zou ◽  
BaoBiao Yu ◽  
Zhi Hu

Abstract The effect of adding cerium on the microstructure and acid rain corrosion resistance of the AlSi11Cu3 alloy was investigated by means of optical microscopy, scanning electron microscopy, and energy dispersive spectroscopy. The AlSi11Cu3 alloy was doped with varying stoichiometries of cerium to generate AlSi11Cu3-xCe, where x = 0, 0.5, 1.0, and 1.5 wt.%. The results show that the α-Al, eutectic Si, and β-Al5FeSi phases in the AlSi11Cu3-1.0Ce alloy are significantly refined. Electrochemical tests demonstrated an increase in the self-corrosion potential value of the AlSi11Cu3-1.0Ce alloy from –670 mV to –628 mV relative to the untreated alloy. In addition, the AlSi11Cu3-1.0Ce alloy has the lowest corrosion current density (8.4 μA × cm–2). Immersion corrosion testing on the AlSi11Cu3-1.0Ce alloy revealed a corrosion rate of 0.71 mg × cm–2 × d–1, constituting a 72% reduction in the corrosion rate compared to the untreated alloy. These results indicate that the AlSi11Cu3-1.0Ce alloy has a high resistance to acid rain corrosion, which is the result of a refinement of the cathode phases.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 597
Author(s):  
Bolin Li ◽  
Tingting Wang ◽  
Peizhen Li ◽  
Shenghai Wang ◽  
Li Wang

The selective laser melting (SLM) of o-Cr-Mo-W/316L composite with 10wt% Co-Cr-Mo-W addition to 316 L stainless steel (SS) powder is produced to explore it’s the corrosion behavior. The tensile experiment of SLM composites is also measured to investigate the difference between the two samples. The optimum parameters of SLM 316 L SS and it’s composite samples are obtained by adjusting laser power and scanning speed with the relative density of 99.04 ± 0.69 and 99.15 ± 0.43. The yield strength of samples is increased from 731.96 MPa to 784.09 MPa after doping, and no obvious crack or fracture failure in the tensile samples are observed, indicating that the excellent plasticity is still maintained. The corrosion resistance of samples is improved largely with an order of magnitude lower corrosion current density than that of 316 L SS and increasing of 277 mv of epit Ep. The addition of Cr element in the doped powder contributes to the formation of the passivated film containing Cr. The different pitting corrosion pit occurs mainly around the pre-existing pores of the powder and further extends outward to form pits with the increase of voltage.


2020 ◽  
Vol 10 (8) ◽  
pp. 1352-1357
Author(s):  
Ling Ji ◽  
Hongfeng Wang ◽  
Man Shi

In this thesis, 1 mm thick 6061 aluminum alloy plates are connected using a friction stir joining device, and the metallographic structure and corrosion resistance of the friction stir joint area obtained with different process parameters are systematically analyzed. The results show that the core region of the joint is composed of small equiaxed crystals, and the grains in the heat-affected zone are elongated in the direction of stirring flow. The grain sizes of the heat-affected zone is different, and it is a coexistence zone of grains of various sizes. When the rotation speed of the stirring head is 15000 rpm and the forward speed of the stirring head is 300 mm/min, the self-corrosive potential of the connection area is optimized during electrochemical corrosion, and thus the self-corrosion current is the smallest. With this parameter, the joint area has the best corrosion resistance.


Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 809 ◽  
Author(s):  
Dariusz Bartkowski ◽  
Aneta Bartkowska ◽  
Adam Piasecki ◽  
Peter Jurči

The paper presents the study results of a laser cladding process of C45 steel using powder mixtures. The aim of this study was to investigate the microstructure, X-ray diffraction (XRD), chemical composition (EDS), microhardness, corrosion resistance and wear resistance of the newly obtained coatings. Modified coatings were prepared using laser cladding technology. A 1 kW continuous wave Yb:YAG disk laser with a powder feeding system was applied. Two different powder mixtures as well as various laser beam parameters were used. The first powder mixture contained Fe–B, and the second mixture was Fe–B–B4C–Si. Two values of laser beam power (600 and 800 W) and three values of scanning speed (600, 800, and 1000 mm/min) were applied during the studies. As a result of the influence of the laser beam, the zones enriched with modifying elements were obtained. Based on the results of XRD, the presence of phases derived from borides and carbides was found. In all cases analyzed, EDS studies showed that there is an increased content of boron in the dendritic areas, while there is an increased silicon content in interdendritic spaces. The addition of B4C and Si improved properties such as microhardness as well as wear and corrosion resistance. The microhardness of the coating increased from approx. 400 HV to approx. 1100 HV depending on the laser parameters used. The best corrosion resistance was obtained for the Fe–B–B4C–Si coating produced using the highest laser beam scanning speed. An improvement in wear resistance can be seen after wear tests, where the weight loss decreased from about 0.08 g to about 0.05 g.


2011 ◽  
Vol 230-232 ◽  
pp. 698-703 ◽  
Author(s):  
Yuan Fang Chen ◽  
Xiao Dong Peng ◽  
Kang Chen ◽  
Jian Jun Hu ◽  
Hong Bin Xu ◽  
...  

TiN coating was deposited on 3Cr2W8V alloy by PVD and then processed with electron beam surface alloying process. The microstructure, microhardness, friction coefficient, amount of wear and corrosion resistance of electron beam treated specimens were investigated. It is shown that the electron beam treated specimens can improve the properties of material. The coating has an average microhardness of approximately HV800, the friction coefficient of electron beam irradiation treated specimens is considerably lower than that of TiN coating. When the electron beam irradiate times is appropriate, the roughness of surface will much lower, and it will achieve polishing effects. The corrosion behavior of the composite coating in 3.5% Nacl solution at room temperature was also determined using a potentiont state system. In comparion with the corrosion potential for 3Cr2W8V alloy, the corrosion potentials of TiN coating and electron beam treated specimen are increased respectively. The electron beam treated specimen has the lowest corrosion current density as well as the highest corrosion potential showing an improved corrosion resistance compared with 3Cr2W8V alloy.


Coatings ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 50 ◽  
Author(s):  
Hengzheng Li ◽  
Min Kang ◽  
Yin Zhang ◽  
Yuntong Liu ◽  
Meifu Jin ◽  
...  

In order to study the effects of pulse parameters on jet electrodeposition, Ni–Co–BN (h) nanocomposite coatings were prepared on the surface of steel C1045. The samples were analyzed and characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), laser scanning confocal microscopy (LSCM), microhardness tester, and electrochemical workstation. The experimental results showed that the contents of Co and BN (h) nanoparticles in the coatings changed with the variation of pulse parameters. When the pulse frequency was 4 kHz and the duty cycle was 0.7, their contents reached maxima of 27.34 wt % and 3.82 wt %, respectively. The XRD patterns of the coatings showed that the deposits had a face-centered cube (fcc) structure, and there was an obvious preferred orientation in (111) plane. With the increase in pulse parameters, the surface roughness of the coatings first decreased and then increased, with the minimum value obtained being 0.664 µm. The microhardness of the coatings first increased and then decreased with increase in pulse parameters. The maximum value of the microhardness reached 719.2 HV0.05 when the pulse frequency was 4 kHz and the duty cycle was 0.7. In the electrochemical test, the potentiodynamic polarization curves of the coatings after immersion in 3.5 wt % NaCl solution showed the pulse parameters had an obvious effect on the corrosion resistance of the Ni–Co–BN (h) nanocamposite coatings. The corrosion current density and polarization resistance indicated that the coatings had better corrosion resistance when the pulse frequency was 4 kHz and duty cycle was 0.7.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 856 ◽  
Author(s):  
Xiaojie Ni ◽  
Shengze Wang ◽  
Yuantao Zhao ◽  
Wenge Li ◽  
Xiong Jiao

The hard and corrosion resistant coatings of Mo2NiB2 cermet were prepared by the laser cladding technique. The influences of the Mo:B ratio and the laser scanning speed on the microstructure and property of the Mo2NiB2 cermet coatings were investigated. The results showed that the laser scanning speed of 1.5 mm/s and the Mo:B ratio of 1 were more beneficial to the formation of Mo2NiB2 cermet than 2.0 mm/s and 0.8, 1.2, respectively. The amount of the Mo2NiB2 ceramic phases were decreased from the top layer to the bottom layer of the coating. The changes of microstructure and composition led to the changes of hardness and corrosion resistance of the Mo2NiB2 cermet coatings. The coating prepared at the Mo:B ratio of 1 and the scanning speed of 1.5 mm/s possessed the highest hardness, and the hardness gradually decreased from the top layer to the bottom layer of the coating. The formation of Mo2NiB2 and {FeM} phases led to the enhanced corrosion resistance of the Mo2NiB2 cermet coatings, and the coating prepared at the Mo:B ratio of 0.8 possessed the best corrosion resistance and the minimum corrosion current.


Sign in / Sign up

Export Citation Format

Share Document