Life Cycle Assessment of opencast lignite mining

2020 ◽  
Author(s):  
Lukasz Lelek ◽  
Joanna Kulczycka

Abstract The life cycle phase of fossil fuel extraction is mainly considered in the LCA when evaluating the energy production processes. It is then only one of many unit processes, which contribute to the blurring of mining-relevant results. There are few items in the literature focusing exclusively on the lignite mining phase and analysing the specific mining conditions and associated environmental impacts. The article focuses on the LCA of lignite mining pro-cesses on the basis of data coming from a Polish mine. The technology for opencast lignite mining is noted for its high production efficiency, high level of recovery and lower risk as regards the safety of workers when compared with underground mining systems. However, the need to remove large amounts of overburden to uncover the deposit contributes to a much greater degradation of the landscape. Analysing the results obtained, several key (hot spot) elements of the lignite mining operations were distinguished for modelling the environmental impact, i.e.: calorific value, the amount of electricity consumption, the manner in which waste and overburden are managed. As a result there is a high sensitivity of the final indicator to changes in these impacts.

Author(s):  
Lukasz Lelek ◽  
Joanna Kulczycka

AbstractThe life cycle phase of fossil fuel extraction is mainly considered in the life cycle assessment (LCA) when evaluating the energy production processes. It is then only one of many unit processes, which contribute to the blurring of mining-relevant results. There are few items in the literature focusing exclusively on the lignite mining phase and analysing the specific mining conditions and associated environmental impacts. The article focuses on the LCA of lignite mining processes on the basis of data coming from a Polish mine. The technology for opencast lignite mining is noted for its high production efficiency, high level of recovery and lower risk as regards the safety of workers when compared with underground mining systems. However, the need to remove large amounts of overburden to uncover the deposit contributes to a much greater degradation of the landscape. Analysing the results obtained, several key (hot spot) elements of the lignite mining operations were distinguished for modelling the environmental impact, i.e.: calorific value, the amount of electricity consumption, the manner in which waste and overburden are managed. As a result there is a high sensitivity of the final indicator to changes in these impacts.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5491
Author(s):  
Maria Anna Cusenza ◽  
Maurizio Cellura ◽  
Francesco Guarino ◽  
Sonia Longo

This study assesses the potential environmental impacts related to the energy valorization of agro-food industry waste thought the Life Cycle Assessment methodology (ISO 14040). The system examined consists of a real anaerobic digester coupled with a combined anaerobic digester and heat and power plant (AD-CHP) operating in Sicily. The analysis accounts for all the impacts occurring from the delivery of the biomass to the AD-CHP plant up to the electricity generation in the CHP. The main outcomes of the study include the eco-profile of the energy system providing electricity and the assessment of the contribution of each life cycle phase aimed at identifying the potential improvement area. The obtained results highlight that the direct emissions associated with the biogas combustion process in the CHP account for 66% of the impact on climate change, and feedstock transport contributes 64% to the impact on mineral, fossil fuels, and renewable depletion. The contribution to the impacts caused by the electricity consumption is relevant in many of the environmental categories examined. It ranges from a minimum of about 22% for climate change up to 82% for freshwater ecotoxicity. Then actions aimed at reducing electricity consumption can significantly improve the environmental performances of the energy system examined.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3273
Author(s):  
Yang Liu ◽  
Congrui Zhang ◽  
Yingying Huang ◽  
Zhixiong Xiao ◽  
Yaxuan Han ◽  
...  

China recently implemented a “Green Mine” policy focused on promoting the filling method, aiming to mitigate the environmental impacts of underground mining; nevertheless, quantitative inventories have rarely been provided to support or negate such promotion, especially from a life-cycle perspective. Accordingly, this paper proposes a bottom-up model for estimating life-cycle greenhouse gas (GHG) emissions from underground metal mines using either filling or caving methods. Two filling-based (Luohe and Longtangyan) and two caving-based (Maogong and Xiaowanggou) iron mines were studied; their direct GHG emissions were 0.576, 0.278, 2.130, and 1.425 tons of carbon dioxide equivalent per kiloton-extracted ore (t CO2 eq/kt), respectively. When indirect GHG emissions were considered, the results increased to 17.386, 15.211, 5.554, and 5.602 t CO2 eq/kt, respectively. In contrast to popular belief, such results demonstrate that promoting the filling method can potentially raise the overall GHG emissions. Although filling-based projects generate less direct GHG emissions, the emissions are transferred to upstream sectors, especially the cement and power sectors. The additional electricity consumption in the haulage and backfilling stages is primarily responsible for the greater GHG emissions occurring in filling-based projects. Some mitigation approaches are suggested, such as backfilling the subsidence pit, using industrial waste as cementing materials, employing energy-efficient pumps, and further developing hauling systems.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexander H. Frank ◽  
Robert van Geldern ◽  
Anssi Myrttinen ◽  
Martin Zimmer ◽  
Johannes A. C. Barth ◽  
...  

AbstractThe relevance of CO2 emissions from geological sources to the atmospheric carbon budget is becoming increasingly recognized. Although geogenic gas migration along faults and in volcanic zones is generally well studied, short-term dynamics of diffusive geogenic CO2 emissions are mostly unknown. While geogenic CO2 is considered a challenging threat for underground mining operations, mines provide an extraordinary opportunity to observe geogenic degassing and dynamics close to its source. Stable carbon isotope monitoring of CO2 allows partitioning geogenic from anthropogenic contributions. High temporal-resolution enables the recognition of temporal and interdependent dynamics, easily missed by discrete sampling. Here, data is presented from an active underground salt mine in central Germany, collected on-site utilizing a field-deployed laser isotope spectrometer. Throughout the 34-day measurement period, total CO2 concentrations varied between 805 ppmV (5th percentile) and 1370 ppmV (95th percentile). With a 400-ppm atmospheric background concentration, an isotope mixing model allows the separation of geogenic (16–27%) from highly dynamic anthropogenic combustion-related contributions (21–54%). The geogenic fraction is inversely correlated to established CO2 concentrations that were driven by anthropogenic CO2 emissions within the mine. The described approach is applicable to other environments, including different types of underground mines, natural caves, and soils.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3820
Author(s):  
Mélanie Douziech ◽  
Lorenzo Tosti ◽  
Nicola Ferrara ◽  
Maria Laura Parisi ◽  
Paula Pérez-López ◽  
...  

Heat production from a geothermal energy source is gaining increasing attention due to its potential contribution to the decarbonization of the European energy sector. Obtaining representative results of the environmental performances of geothermal systems and comparing them with other renewables is of utmost importance in order to ensure an effective energy transition as targeted by Europe. This work presents the outputs of a Life Cycle Assessment (LCA) performed on the Rittershoffen geothermal heat plant applying guidelines that were developed within the H2020 GEOENVI project. The production of 1 kWhth from the Rittershoffen heat plant was compared to the heat produced from natural gas in Europe. Geothermal heat production performed better than the average heat production in climate change and resource use, fossil categories. The LCA identified the electricity consumption during the operation and maintenance phase as a hot spot for several impact categories. A prospective scenario analysis was therefore performed to assess the evolution of the environmental performances of the Rittershoffen heat plant associated with the future French electricity mixes. The increase of renewable energy shares in the future French electricity mix caused the impact on specific categories (e.g., land use and mineral and metals resource depletion) to grow over the years. However, an overall reduction of the environmental impacts of the Rittershoffen heat plant was observed.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Yeit Haan Teow ◽  
Meng Teck Chong ◽  
Kah Chun Ho ◽  
Abdul Wahab Mohammad

AbstractAiming to mitigate wastewater pollution arising from the palm oil industry, this university-industry research-and-development project focused on the integration of serial treatment processes, including the use of moving bed biofilm reactor (MBBR), pre-treatment with sand filters and activated carbon filters, and membrane technology for aerobically-digested palm oil mill effluent (POME) treatment. To assess the potential of this sustainable alternative practice in the industry, the developed technology was demonstrated in a pilot-scale facility: four combinations (Combinations I to IV) of unit operations were developed in an integrated membrane-filtration system. Combination I includes a MBBR, pre-treatment unit comprising sand filters and activated carbon filters, ultrafiltration (UF) membrane, and reverse osmosis (RO) membrane, while Combination II excludes MBBR, Combination III excludes UF membrane, and Combination IV excludes both MBBR and UF membrane. Life cycle assessment (LCA) was performed to evaluate potential environmental impacts arising from each combination while achieving the goal of obtaining recycled and reusable water from the aerobically-digested POME treatment. It is reported that electricity consumption is the predominant factor contributing to most of those categories (50–77%) as the emissions of carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen oxides, and volatile mercury during the combustion of fossil fuels. Combination I in the integrated membrane-filtration system with all unit operations incurring high electricity consumption (52 MJ) contributed to the greatest environmental impact. Electricity consumption registers the highest impact towards all life cycle impact categories: 73% on climate change, 80% on terrestrial acidification, 51% on eutrophication, and 43% on human toxicity. Conversely, Combination IV is the most environmentally-friendly process, since it involves only two-unit operations – pre-treatment unit (comprising sand filters and activated carbon filters) and RO membrane unit – and thus incurs the least electricity consumption (41.6 MJ). The LCA offers insights into each combination of the operating process and facilitates both researchers and the industry towards sustainable production.


2017 ◽  
Vol 10 (4) ◽  
pp. 880-896
Author(s):  
Helena Merikoski ◽  
Paula Savolainen ◽  
Jarmo J. Ahonen

Purpose The purpose of this paper is to present a life cycle phase of a software development project which is substantial for the success of the project. This paper visualizes the project start-up phase from suppliers’ perspective. Design/methodology/approach The method is a theory building from case studies. The data were collected from three software supplier firms by conducting process modeling separately in each firm. Findings The study resulted in a model of a supplier’s software project start-up which includes start-up practices and involved roles. The results indicate that project start-up is an integral and structured phase of project life cycle, which influences the execution of a software development project, especially from the supplier’s perspective in the project business context. Research limitations/implications The study focuses on the start-up phase of software development projects delivered to external customers. Therefore, developed project start-up model is applicable as such in software supplier firms. Practical implications The project start-up model presented in this paper indicates that project start-up is a complex and multi-dimensional activity in a supplier firm. This study suggests that if the project start-up phase is clearly defined, planned and followed in a supplier firm, it reduces confusion and miscommunication among the people involved in the project and helps to achieve the business goals of a project. Originality/value This study emphasizes that it is necessary to make a distinction between the perspectives of the customer and the supplier when studying projects in the project business context. The findings contribute the new knowledge for managing outsourced software development projects.


2003 ◽  
Vol 14 (1) ◽  
pp. 59-67
Author(s):  
Adepo Jepson Olumide ◽  
Ayodele Charles Oludare ◽  
Balogun Olufemi

Coal, a solid fuel in its natural state has been identified as one of the world's major fossil fuels. It is a compact, stratified mass of mummified plant debris interspersed with smaller amounts of inorganic matter buried in sedimentary rocks. The use of coal as an energy source can be dated back to the prehistoric times. Methane is associated with many if not all coal seams, and is the dreaded “fire damp” responsible for many pit explosions. Coal mines are designed to vent as much methane as possible. It is present in the pores of coal under pressure, released during mining operations and can be extracted through vertical well bores. This paper highlights the fact that pipeline- quality methane can be extracted economically from coal seems before and during underground mining operations. The stimulation method involves hydraulic fracturing of the coal seam by using water, sand and, a gelling agent in a staged and alternating sand/and no sand sequence. The purpose is to create new fractures in the coal seam(s). The cleating of the coal helps to determine the flow characteristics of the coal formation and is vital in the initial productivity of a coal-methane well. The simple calculation of gas-in-place is achieved by multiplying the gas content of the coal by net coal thickness, the density, and the aerial extent of the drainage. The method is claimed to be suitable for use in Nigeria and potential sites for coal bed methane extraction in Nigeria are identified.


Ugol ◽  
2020 ◽  
pp. 29-34
Author(s):  
A.B. Kilin ◽  
◽  
V.A. Galkin ◽  
A.M. Makarov ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document