scholarly journals Shock response and degassing reactions of calcite at planetary impact conditions

2020 ◽  
Author(s):  
Yuhei Umeda ◽  
Keiya Fukui ◽  
Toshimori Sekine ◽  
Marco Guarguaglini ◽  
Alessandra Benuzzi-Mounaix ◽  
...  

Abstract Calcite (CaCO3) as a planetary material is a source to the atmospheric carbon dioxide through degassing by high-velocity impact events. Revealing the behavior of calcite in the extreme pressure and temperature conditions is required to understand the impact-induced degassing phenomena. Here we report laboratory investigations of shock- compressed calcite beyond the impact velocity of 12 km/s (faster than escape velocity from the Earth). The present precise shock measurements elucidate the shape of the calcite Hugoniot curve continuously passing through the melting and metallization states up to a pressure of 1000 GPa (= 10-million atmospheres) or a corresponding impact velocity of 30 km/s, allowing us to predict the post-shock residual temperatures and the dominant carbon oxide species in the impact aftermath. These predictions suggest that CO emission is much more dominant than CO2 at the impact velocities of ∼10 km/s and above, affecting the planetary atmospheric chemistry, greenhouse processes, and environmental changes during planetary evolution.

2021 ◽  
Vol 8 ◽  
Author(s):  
Joan M. Bernhard ◽  
Johannes C. Wit ◽  
Victoria R. Starczak ◽  
David J. Beaudoin ◽  
William G. Phalen ◽  
...  

Ocean chemistry is changing as a result of human activities. Atmospheric carbon dioxide (CO2) concentrations are increasing, causing an increase in oceanic pCO2 that drives a decrease in oceanic pH, a process called ocean acidification (OA). Higher CO2 concentrations are also linked to rising global temperatures that can result in more stratified surface waters, reducing the exchange between surface and deep waters; this stronger stratification, along with nutrient pollution, contributes to an expansion of oxygen-depleted zones (so called hypoxia or deoxygenation). Determining the response of marine organisms to environmental changes is important for assessments of future ecosystem functioning. While many studies have assessed the impact of individual or paired stressors, fewer studies have assessed the combined impact of pCO2, O2, and temperature. A long-term experiment (∼10 months) with different treatments of these three stressors was conducted to determine their sole or combined impact on the abundance and survival of a benthic foraminiferal community collected from a continental-shelf site. Foraminifera are well suited to such study because of their small size, relatively rapid growth, varied mineralogies and physiologies. Inoculation materials were collected from a ∼77-m deep site south of Woods Hole, MA. Very fine sediments (<53 μm) were used as inoculum, to allow the entire community to respond. Thirty-eight morphologically identified taxa grew during the experiment. Multivariate statistical analysis indicates that hypoxia was the major driving factor distinguishing the yields, while warming was secondary. Species responses were not consistent, with different species being most abundant in different treatments. Some taxa grew in all of the triple-stressor samples. Results from the experiment suggest that foraminiferal species’ responses will vary considerably, with some being negatively impacted by predicted environmental changes, while other taxa will tolerate, and perhaps even benefit, from deoxygenation, warming and OA.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Juan Attard ◽  
Sholeem Griffin ◽  
Vasilis Valdramidis

Documented increases in atmospheric Carbon Dioxide (CO2) concentrations have contributed to a rise in average global temperatures. Environmental variation due to climate change is expected to affect the growth of microorganisms. Hence, there is a need to assess the induced adaptations of microorganisms, which are common biological contaminants, to environmental changes. Therefore, an enhanced green fluorescent protein (eGFP) expressing Escherichia coli BL21(DE3) clone was generated. Plasmid pAP1698-4 was used as the donor for the eGFP gene and pD454-MBP as the recipient plasmid to produce pD454-MBPeGFP. Expression of eGFP in the clone was confirmed using confocal microscopy. The growth of the clone was characterised by plate counting technique. Variation in the length of the lag phase, λ, and growth rate, μmax, kinetic parameters of the clone was observed, compared to the wildtype BL21(DE3). A live/dead kinetic assay, using eGFP for the quantification of live cells and propidium iodide (PI) as a stain for dead cells, was optimised using a microplate reader with controlled temperature and CO2 conditions. Full growth curves were collected when culture media was inoculated with 4 to 6 Log10CFU.mL-1. The optimal PI concentration was 150 nM; higher concentrations inhibited growth, and lower concentrations gave no signal difference compared to the blank. The growth kinetics of the clone under different environmental conditions; between 400 ppm to 2500 ppm CO2, combined with 37°C to 42°C, were evaluated using the live/dead kinetic assay, allowing assessment of response to induced environmental stress.


Author(s):  
Rodrigo Cueva ◽  
Guillem Rufian ◽  
Maria Gabriela Valdes

The use of Customer Relationship Managers to foster customers loyalty has become one of the most common business strategies in the past years.  However, CRM solutions do not fill the abundance of happily ever-after relationships that business needs, and each client’s perception is different in the buying process.  Therefore, the experience must be precise, in order to extend the loyalty period of a customer as much as possible. One of the economic sectors in which CRM’s have improved this experience is retailing, where the personalized attention to the customer is a key factor.  However, brick and mortar experiences are not enough to be aware in how environmental changes could affect the industry trends in the long term.  A base unified theoretical framework must be taken into consideration, in order to develop an adaptable model for constructing or implementing CRMs into companies. Thanks to this approximation, the information is complemented, and the outcome will increment the quality in any Marketing/Sales initiative. The goal of this article is to explore the different factors grouped by three main domains within the impact of service quality, from a consumer’s perspective, in both on-line and off-line retailing sector.  Secondly, we plan to go a step further and extract base guidelines about previous analysis for designing CRM’s solutions focused on the loyalty of the customers for a specific retailing sector and its product: Sports Running Shoes.


Author(s):  
Andrea A. Joyce ◽  
Grace M. Styklunas ◽  
Nancy A. Rigotti ◽  
Jordan M. Neil ◽  
Elyse R. Park ◽  
...  

The impact of the COVID-19 pandemic on US adults’ smoking and quitting behaviors is unclear. We explored the impact of COVID-19 on smoking behaviors, risk perceptions, and reactions to text messages during a statewide stay-at-home advisory among primary care patients who were trying to quit. From May–June 2020, we interviewed smokers enrolled in a 12-week, pilot cessation trial providing text messaging and mailed nicotine replacement medication (NCT04020718). Twenty-two individuals (82% white, mean age 55 years), representing 88% of trial participants during the stay-at-home advisory, completed exit interviews; four (18%) of them reported abstinence. Interviews were thematically analyzed by two coders. COVID-19-induced environmental changes had mixed effects, facilitating quitting for some and impeding quitting for others. While stress increased for many, those who quit found ways to cope with stress. Generally, participants felt at risk for COVID-19 complications but not at increased risk of becoming infected. Reactions to COVID-19 and quitting behaviors differed across age groups, older participants reported difficulties coping with isolation (e.g., feeling disappointed when a text message came from the study and not a live person). Findings suggest that cessation interventions addressing stress and boredom are needed during COVID-19, while smokers experiencing isolation may benefit from live-person supports.


2021 ◽  
Vol 18 (6) ◽  
pp. 1405-1423
Author(s):  
Dariusz Strzyżowski ◽  
Elżbieta Gorczyca ◽  
Kazimierz Krzemień ◽  
Mirosław Żelazny

AbstractStrong wind events frequently result in creating large areas of windthrow, which causes abrupt environmental changes. Bare soil surfaces within pits and root plates potentially expose soil to erosion. Absence of forest may alter the dynamics of water circulation. In this study we attempt to answer the question of whether extensive windthrows influence the magnitude of geomorphic processes in 6 small second- to third-order catchments with area ranging from 0.09 km2 to 0.8 km2. Three of the catchments were significantly affected by a windthrow which occurred in December 2013 in the Polish part of the Tatra Mountains, and the other three catchments were mostly forested and served as control catchments. We mapped the pits created by the windthrow and the linear scars created by salvage logging operations in search of any signs of erosion within them. We also mapped all post-windthrow landslides created in the windthrow-affected catchments. The impact of the windthrow on the fluvial system was investigated by measuring a set of channel characteristics and determining bedload transport intensity using painted tracers in all the windthrow-affected and control catchments. Both pits and linear scars created by harvesting tend to become overgrown by vegetation in the first several years after the windthrow. The only signs of erosion were observed in 10% of the pits located on convergent slopes. During the period from the windthrow event in 2013 until 2019, 5 very small (total area <100 m2) shallow landslides were created. The mean distance of bedload transport was similar (t-test, p=0.05) in most of the windthrow-affected and control catchments. The mapping of channels revealed many cases of root plates fallen into a channel and pits created near a channel. A significant amount of woody debris delivered into the channels influenced the activity of fluvial processes by creating alternating zones of erosion and accumulation.


2021 ◽  
Vol 11 (8) ◽  
pp. 3580
Author(s):  
Cristina Val-Peón ◽  
Juan I. Santisteban ◽  
José A. López-Sáez ◽  
Gerd-Christian Weniger ◽  
Klaus Reicherter

The SW coast of the Iberian Peninsula experiences a lack of palaeoenvironmental and archaeological data. With the aim to fill this gap, we contribute with a new palynological and geochemical dataset obtained from a sediment core drilled in the continental shelf of the Algarve coast. Archaeological data have been correlated with our multi-proxy dataset to understand how human groups adapted to environmental changes during the Early-Mid Holocene, with special focus on the Mesolithic to Neolithic transition. Vegetation trends indicate warm conditions at the onset of the Holocene followed by increased moisture and forest development ca. 10–7 ka BP, after which woodlands are progressively replaced by heaths. Peaks of aridity were identified at 8.2 and 7. 5 ka BP. Compositional, textural, redox state, and weathering of source area geochemical proxies indicates abrupt palaeoceanographic modifications and gradual terrestrial changes at 8.2 ka BP, while the 7.5 ka BP event mirrors a decrease in land moisture availability. Mesolithic sites are mainly composed of seasonal camps with direct access to the coast for the exploitation of local resources. This pattern extends into the Early Neolithic, when these sites coexist with seasonal and permanent occupations located in inland areas near rivers. Changes in settlement patterns and dietary habits may be influenced by changes in coastal environments caused by the sea-level rise and the impact of the 8.2 and 7.5 ka BP climate events.


2021 ◽  
Vol 13 (8) ◽  
pp. 4372
Author(s):  
Abdullah Addas ◽  
Ahmad Maghrabi

Public open spaces services have been shown to be profoundly affected by rapid urbanization and environmental changes, and in turn, they have influenced socio-cultural relationships and human well-being. However, the impact of these changes on public open space services (POSS) remains unexplored, particularly in the Saudi Arabian context. This study examines the socio-cultural influence of POSS on the King Abdulaziz University campus, Jeddah, Saudi Arabia and the impact of these services on well-being. A field survey and questionnaire were used to collect data. Non-parametric tests (Kruskal–Wallis and Mann–Whitney tests) were used to find significant differences in the importance of POSS as perceived by stakeholders based on socio-demographic attributes. Factor analysis was performed for 14 POSS to identify those that are most important. The study showed that (i) university stakeholders are closely linked to services provided by public open spaces (POS) and dependent on POSS, (ii) there were significant differences in the perceived importance of POSS according to gender, age, and social groups, and (iii) 70 to 90% of stakeholders reported POSS as having a positive impact on well-being. Thus, the findings will help design and plan POSS to meet the needs of society and promote well-being.


Author(s):  
Takeshi Mizunoya ◽  
Noriko Nozaki ◽  
Rajeev Kumar Singh

AbstractIn the early 2000s, Japan instituted the Great Heisei Consolidation, a national strategy to promote large-scale municipal mergers. This study analyzes the impact that this strategy could have on watershed management. We select the Lake Kasumigaura Basin, the second largest lake in Japan, for the case study and construct a dynamic expanded input–output model to simulate the ecological system around the Lake, the socio-environmental changes over the period, and their mutual dependency for the period 2012–2020. In the model, we regulate and control the following water pollutants: total nitrogen, total phosphorus, and chemical oxygen demand. The results show that a trade-off between economic activity and the environment can be avoided within a specific range of pollution reduction, given that the prefectural government implements optimal water environment policies, assuming that other factors constraining economic growth exist. Additionally, municipal mergers are found to significantly reduce the budget required to improve the water environment, but merger budget efficiency varies nonlinearly with the reduction rate. Furthermore, despite the increase in financial efficiency from the merger, the efficiency of installing domestic wastewater treatment systems decreases drastically beyond a certain pollution reduction level and eventually reaches a limit. Further reductions require direct regulatory instruments in addition to economic policies, along with limiting the output of each industry. Most studies on municipal mergers apply a political, administrative, or financial perspective; few evaluate the quantitative impact of municipal mergers on the environment and environmental policy implications. This study addresses these gaps.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yun-Hung Kuang ◽  
Yu-Fu Fang ◽  
Shau-Ching Lin ◽  
Shin-Fu Tsai ◽  
Zhi-Wei Yang ◽  
...  

Abstract Background The impact of climate change on insect resistance genes is elusive. Hence, we investigated the responses of rice near-isogenic lines (NILs) that carry resistance genes against brown planthopper (BPH) under different environmental conditions. Results We tested these NILs under three environmental settings (the atmospheric temperature with corresponding carbon dioxide at the ambient, year 2050 and year 2100) based on the Intergovernmental Panel on Climate Change prediction. Comparing between different environments, two of nine NILs that carried a single BPH-resistant gene maintained their resistance under the environmental changes, whereas two of three NILs showed gene pyramiding with two maintained BPH resistance genes despite the environmental changes. In addition, two NILs (NIL-BPH17 and NIL-BPH20) were examined in their antibiosis and antixenosis effects under these environmental changes. BPH showed different responses to these two NILs, where the inhibitory effect of NIL-BPH17 on the BPH growth and development was unaffected, while NIL-BPH20 may have lost its resistance during the environmental changes. Conclusion Our results indicate that BPH resistance genes could be affected by climate change. NIL-BPH17 has a strong inhibitory effect on BPH feeding on phloem and would be unaffected by environmental changes, while NIL-BPH20 would lose its ability during the environmental changes.


Sign in / Sign up

Export Citation Format

Share Document