scholarly journals Sulfated host glycan recognition by carbohydrate sulfatases of the human gut microbiota

Author(s):  
Ana Luis ◽  
Arnaud Baslé ◽  
Dominic Byrne ◽  
Gareth Wright ◽  
James London ◽  
...  

Abstract The vast microbial community that resides in the human colon, termed the human gut microbiota, performs important roles in maintaining host health. Sulfated host glycans comprise both a major nutrient source and important colonisation factors for this community. Carbohydrate sulfatases remove sulfate groups from glycans and are essential in many bacteria for the utilisation of sulfated host glycans. Additionally, carbohydrate sulfatases are also implicated in numerous host diseases, but remain some of the most understudied carbohydrate active enzymes to date, especially at the structural and molecular level. In this work, we analyse 7 carbohydrate sulfatases, spanning 4 subfamilies, from the human gut symbiont Bacteroides thetaiotaomicron, a major utiliser of sulfated host glycans, correlating structural and functional data with phylogenetic and environmental analyses. Together, these data begin to fill the knowledge gaps in how carbohydrate sulfatases orchestrate sulfated glycan metabolism within their environment.

2021 ◽  
Author(s):  
Ana S Luis ◽  
Arnaud Basle ◽  
Dominic P Byrne ◽  
Gareth SA Wright ◽  
James London ◽  
...  

The vast microbial community that resides in the human colon, termed the human gut microbiota, performs important roles in maintaining host health. Sulfated host glycans comprise both a major nutrient source and important colonisation factors for this community. Carbohydrate sulfatases remove sulfate groups from glycans and are essential in many bacteria for the utilisation of sulfated host glycans. Additionally, carbohydrate sulfatases are also implicated in numerous host diseases, but remain some of the most understudied carbohydrate active enzymes to date, especially at the structural and molecular level. In this work, we analyse 7 carbohydrate sulfatases, spanning 4 subfamilies, from the human gut symbiont Bacteroides thetaiotaomicron, a major utiliser of sulfated host glycans, correlating structural and functional data with phylogenetic and environmental analyses. Together, these data begin to fill the knowledge gaps in how carbohydrate sulfatases orchestrate sulfated glycan metabolism within their environment.


2016 ◽  
Vol 7 (9) ◽  
pp. 4048-4060 ◽  
Author(s):  
Giuseppina Mandalari ◽  
Simona Chessa ◽  
Carlo Bisignano ◽  
Luisa Chan ◽  
Arianna Carughi

Modulation of the human gut microbiota has proven to have beneficial effects on host health. Sun-dried raisins exhibited prebiotic potential.


2013 ◽  
Vol 11 (7) ◽  
pp. 497-504 ◽  
Author(s):  
Abdessamad El Kaoutari ◽  
Fabrice Armougom ◽  
Jeffrey I. Gordon ◽  
Didier Raoult ◽  
Bernard Henrissat

mSphere ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Sabina Leanti La Rosa ◽  
Vasiliki Kachrimanidou ◽  
Fanny Buffetto ◽  
Phillip B. Pope ◽  
Nicholas A. Pudlo ◽  
...  

The architecture of the gut bacterial ecosystem has a profound effect on the physiology and well-being of the host. Modulation of the gut microbiota and the intestinal microenvironment via administration of prebiotics represents a valuable strategy to promote host health. This work provides insights into the ability of two novel wood-derived preparations, AcGGM and AcAGX, to influence human gut microbiota composition and activity. These compounds were selectively fermented by commensal bacteria such as Bifidobacterium, Bacteroides-Prevotella, F. prausnitzii, and clostridial cluster IX spp. This promoted the microbial synthesis of acetate, propionate, and butyrate, which are beneficial to the microbial ecosystem and host colonic epithelial cells. Thus, our results demonstrate potential prebiotic properties for both AcGGM and AcAGX from lignocellulosic feedstocks. These findings represent pivotal requirements for rationally designing intervention strategies based on the dietary supplementation of AcGGM and AcAGX to improve or restore gut health.


2019 ◽  
Vol 7 (11) ◽  
pp. 544 ◽  
Author(s):  
Francesca Turroni ◽  
Sabrina Duranti ◽  
Christian Milani ◽  
Gabriele Andrea Lugli ◽  
Douwe van Sinderen ◽  
...  

Bifidobacteria typically represent the most abundant bacteria of the human gut microbiota in healthy breast-fed infants. Members of the Bifidobacterium bifidum species constitute one of the dominant taxa amongst these bifidobacterial communities and have been shown to display notable physiological and genetic features encompassing adhesion to epithelia as well as metabolism of host-derived glycans. In the current review, we discuss current knowledge concerning particular biological characteristics of the B. bifidum species that support its specific adaptation to the human gut and their implications in terms of supporting host health.


Author(s):  
Sudeep Ghimire ◽  
Supapit Wongkuna ◽  
Ranjini Sankaranarayanan ◽  
Elizabeth P. Ryan ◽  
G. Jayarama Bhat ◽  
...  

AbstractDiet is one of the prominent determinants of gut microbiota composition significantly impacting human health. Recent studies with dietary supplements such as rice bran and quercetin have been shown to provide a beneficial impact on the host by positively influencing the gut microbiota. However, the specific bacterial species impacted when rice bran or quercetin is present in the diet is not well understood. Therefore, in this study, we used a minibioreactor array system as a model to determine the effect of quercetin and rice bran individually, as well as in combination, on gut microbiota without the confounding host factors. We found that rice bran exerts higher shift in gut microbiome composition when compared to quercetin. At the species level, Acidaminococcus intestini was the only significantly enriched taxa when quercetin was supplemented, while 15 species were enriched in rice bran supplementation and 13 were enriched when quercetin and rice bran were supplemented in combination. When comparing the short chain fatty acid production, quercetin supplementation significantly enriched isobutyrate production while propionate dominated the quercetin and rice bran combined group. Higher levels of propionate were highly correlated to the lower abundance of the potentially pathogenic Enterobacteriaceae family. These findings suggest that the combination of rice bran and quercetin serve to enrich beneficial bacteria and reduce potential opportunistic pathogens. However, further in vivo studies are necessary to determine the synergistic effect of rice bran and quercetin on host health and immunity.ImportanceRice bran and quercetin are dietary components that shape host health by interacting with the gut microbiome. Both these substrates have been reported to provide nutritional and immunological benefits individually. However, considering the complexity of the human diet, it is useful to determine how the combination of food ingredients such as rice bran and quercetin influences the human gut microbiota. Our study provides insights into how these ingredients influence microbiome composition alone and in combination in vitro. This will allow us to identify which species in the gut microbiome are responsible for biotransformation of these dietary ingredients.. Such information is helpful for the development of synbiotics to improve gut health and immunity.


2019 ◽  
Vol 36 (4) ◽  
pp. 593-625 ◽  
Author(s):  
Lauren J. Rajakovich ◽  
Emily P. Balskus

Metalloenzymes play central roles in metabolic functions of the human gut microbiota that are associated with host health and disease.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
EM Pferschy-Wenzig ◽  
K Koskinen ◽  
C Moissl-Eichinger ◽  
R Bauer

2017 ◽  
Author(s):  
EM Pferschy-Wenzig ◽  
A Roßmann ◽  
K Koskinen ◽  
H Abdel-Aziz ◽  
C Moissl-Eichinger ◽  
...  

2020 ◽  
Author(s):  
Y Liu ◽  
AL Heath ◽  
B Galland ◽  
N Rehrer ◽  
L Drummond ◽  
...  

© 2020 American Society for Microbiology. Dietary fiber provides growth substrates for bacterial species that belong to the colonic microbiota of humans. The microbiota degrades and ferments substrates, producing characteristic short-chain fatty acid profiles. Dietary fiber contains plant cell wall-associated polysaccharides (hemicelluloses and pectins) that are chemically diverse in composition and structure. Thus, depending on plant sources, dietary fiber daily presents the microbiota with mixtures of plant polysaccharides of various types and complexity. We studied the extent and preferential order in which mixtures of plant polysaccharides (arabinoxylan, xyloglucan, β-glucan, and pectin) were utilized by a coculture of five bacterial species (Bacteroides ovatus, Bifidobacterium longum subspecies longum, Megasphaera elsdenii, Ruminococcus gnavus, and Veillonella parvula). These species are members of the human gut microbiota and have the biochemical capacity, collectively, to degrade and ferment the polysaccharides and produce short-chain fatty acids (SCFAs). B. ovatus utilized glycans in the order β-glucan, pectin, xyloglucan, and arabinoxylan, whereas B. longum subsp. longum utilization was in the order arabinoxylan, arabinan, pectin, and β-glucan. Propionate, as a proportion of total SCFAs, was augmented when polysaccharide mixtures contained galactan, resulting in greater succinate production by B. ovatus and conversion of succinate to propionate by V. parvula. Overall, we derived a synthetic ecological community that carries out SCFA production by the common pathways used by bacterial species for this purpose. Systems like this might be used to predict changes to the emergent properties of the gut ecosystem when diet is altered, with the aim of beneficially affecting human physiology. This study addresses the question as to how bacterial species, characteristic of the human gut microbiota, collectively utilize mixtures of plant polysaccharides such as are found in dietary fiber. Five bacterial species with the capacity to degrade polymers and/or produce acidic fermentation products detectable in human feces were used in the experiments. The bacteria showed preferential use of certain polysaccharides over others for growth, and this influenced their fermentation output qualitatively. These kinds of studies are essential in developing concepts of how the gut microbial community shares habitat resources, directly and indirectly, when presented with mixtures of polysaccharides that are found in human diets. The concepts are required in planning dietary interventions that might correct imbalances in the functioning of the human microbiota so as to support measures to reduce metabolic conditions such as obesity.


Sign in / Sign up

Export Citation Format

Share Document