scholarly journals Effect of Volcano-like Textured Coated Tools on Machining of Ti6Al4V: An Experimental and Simulative Investigation

Author(s):  
Yun Zhou ◽  
Yonghong Fu ◽  
Jie Yang

Abstract In this work, the main aim is to reduce the adhesion and wear that happened during machining of the Ti6Al4V alloy by employing volcano-like texture on the rake face of coated tool. A combination of experimental and simulative investigation was adopted. DEFORM-3D software with updated Lagrangian formulation was used for numerical simulation, and the thermo-mechanical analysis was performed using Johnson-Cook material model to predict the cutting temperature, cutting forces, chip morphology and tool wear. In cutting experiments, volcano-like textures with different area densities (10%, 20%, 30%) were fabricated by fiber laser on the rake face of cemented carbide tools close to the main cutting edge. Then, these textured tools were deposited with CrAlN coating through cathodic vacuum arc ion plating technique. Experiments in cutting Ti6Al4V alloy were carried out with the textured coated tools and non-textured coated tool under dry and wet cutting conditions. Then, the chip morphology, chip size and tool wear were investigated. The results showed that textured coated tools were superior to conventional tool. Especially in wet cutting, compared with those of non-textured coated tool, the adhesion area and the chip curling radius of the coated tool with texture area density of 20% (VCT2) were reduced by 31.2% and 49.7%, respectively. Therefore, VCT2 tool showed a better cutting performance. Finally, the mechanisms of textured coated tools under dry and wet cutting conditions were proposed.

2013 ◽  
Vol 797 ◽  
pp. 149-154
Author(s):  
Kang Li ◽  
Peng Nan Li ◽  
Ming Chen

With the development of the coating technology, coated tools have been widely used in processing industries. Thread turning is one of its applications. The performance of coated thread inserts varies with the change of coating material, coating thickness, matrix material and tool structure. Two tungsten-cobalt type alloy matrix, TiAlN coated thread inserts with different coating thickness, rake face type had been employed to conduct the thread turning experiments. By analyzing the cutting forces, chip formation and tool wear, it was found that insert with coating thickness of 4.35 μm would result in less tool wear under MQL condition, smaller cutting force, better chip morphology under dry condition compared with insert with coating thickness of 2.38 μm.


2014 ◽  
Vol 611-612 ◽  
pp. 1243-1249
Author(s):  
Domenico Umbrello

Machining of advanced aerospace materials have grown in the recent years although the difficult-to-machine characteristics of alloys like titanium or nickel based alloys cause higher cutting forces, rapid tool wear, and more heat generation. Therefore, machining with the use of cooling lubricants is usually carried out. To reduce the production costs and to make the processes environmentally safe, the goal is to move toward dry cutting by eliminating cutting fluids. This objective can be achieved by using coated tool, by increasing cutting speed and by improving the product performance in term of surface integrity and product quality. The paper addresses the effects of cutting speed and feed on the surface integrity during dry machining of Waspaloy using coated tools. In particular, the influence of the cutting conditions on mechanical power consumption, the tool wear and some important indicator of the surface integrity (surface roughness, affected layer, microhardness, grain size and microstructural alteration) were investigated. Results show that cutting conditions have a significant effect on the parameters related to the surface integrity of the product affecting its overall performance.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 266
Author(s):  
M.S.I. Chowdhury ◽  
B. Bose ◽  
S. Rawal ◽  
G.S. Fox-Rabinovich ◽  
S.C. Veldhuis

Tool wear phenomena during the machining of titanium alloys are very complex. Severe adhesive interaction at the tool chip interface, especially at low cutting speeds, leads to intensive Built Up Edge (BUE) formation. Additionally, a high cutting temperature causes rapid wear in the carbide inserts due to the low thermal conductivity of titanium alloys. The current research studies the effect of AlTiN and CrN PVD coatings deposited on cutting tools during the rough turning of a Ti6Al4V alloy with severe BUE formation. Tool wear characteristics were evaluated in detail using a Scanning Electron Microscope (SEM) and volumetric wear measurements. Chip morphology analysis was conducted to assess the in situ tribological performance of the coatings. A high temperature–heavy load tribometer that mimics machining conditions was used to analyze the frictional behavior of the coatings. The micromechanical properties of the coatings were also investigated to gain a better understanding of the coating performance. It was demonstrated that the CrN coating possess unique micromechanical properties and tribological adaptive characteristics that minimize BUE formation and significantly improve tool performance during the machining of the Ti6Al4V alloy.


2010 ◽  
Vol 443 ◽  
pp. 382-387 ◽  
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Suthas Ratanakuakangwan

This paper presents the additional work of the previous research in order to verify the previously obtained cutting condition by using the different cutting tool geometries. The effects of the cutting conditions with the dry cutting are monitored to obtain the proper cutting condition for the plain carbon steel with the coated carbide tool based on the consideration of the surface roughness and the tool life. The dynamometer is employed and installed on the turret of CNC turning machine to measure the in-process cutting forces. The in-process cutting forces are used to analyze the cutting temperature, the tool wear and the surface roughness. The experimentally obtained results show that the surface roughness and the tool wear can be well explained by the in-process cutting forces. Referring to the criteria, the experimentally obtained proper cutting condition is the same with the previous research except the rake angle and the tool nose radius.


2013 ◽  
Vol 690-693 ◽  
pp. 2030-2035
Author(s):  
Shu Bao Yang ◽  
Hong Chao Ni ◽  
Guo Hui Zhu

Ti6Al4V alloy is widely used in the aircraft industry, marine and the commercial applications due to its excellent comprehensive properties. However, its poor machinability prevents it from application widely, and the rapid tool wear is one of the key factors. The FEM models of cutting titanium alloy are established. The effect of tool wear on chip morphology, cutting temperature and cutting force are studied. The simulation results show that: the cutting force and cutting temperature will rise with the increase of tool wear. Furthermore, the degree of chip deformation will improve, but the frequency of serrated chip tooth occurred will decrease.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1515
Author(s):  
Jinxing Wu ◽  
Lin He ◽  
Yanying Wu ◽  
Chaobiao Zhou ◽  
Zhongfei Zou ◽  
...  

Tool-chip friction increases cutting temperature, aggravates tool wear, and shortens the service life of cutting tools. A micro-groove design of the rake face can improve the wear performance of the tool. In this study, we used the finite element simulation “Deform” to obtain the temperature field distribution of the tool rake face. The size of the micro-groove was determined by selecting a suitable temperature field combined with the characteristics of tool–chip flow in the cutting process, and the tool was prepared using powder metallurgy. The three-direction cutting forces and tool tip temperature were obtained by a cutting test. Compared with the original turning tool, the cutting force and cutting temperature of the micro-groove tool were reduced by more than 20%, the friction coefficient was reduced by more than 14%, the sliding energy was reduced and the shear energy was greatly decreased. According to the analysis of tool wear by SEM (scanning electron microscope) and EDS (energy dispersive X-ray spectroscopy), the crater wear, adhesive wear and oxidation wear of the micro-groove tool were lower than those of the original turning tool. In particular, the change in the crater wear area on the rake face of the original tool and the micro-groove tool was consistent with the cutting temperature and the wear width of the flank face. On the whole, the crater wear area and the change rate of the crater wear area of the micro-groove tool were smaller. Due to the proper microgroove structure of the rake face, the tool-chip contact area decreased, and the second rake angle of the tool became larger. Hence, the tool-chip friction, cutting forces, cutting energy consumption were reduced, tool wear was improved, and the service life of the micro-groove tool was five times longer than that of the original tool.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3266 ◽  
Author(s):  
Yuan Li ◽  
Guangming Zheng ◽  
Xiang Cheng ◽  
Xianhai Yang ◽  
Rufeng Xu ◽  
...  

The cutting performance of cutting tools in high-speed machining (HSM) is an important factor restricting the machined surface integrity of the workpiece. The HSM of AISI 4340 is carried out by using coated tools with TiN/TiCN/TiAlN multi-coating, TiAlN + TiN coating, TiCN + NbC coating, and AlTiN coating, respectively. The cutting performance evaluation of the coated tools is revealed by the chip morphology, cutting force, cutting temperature, and tool wear. The results show that the serration and shear slip of the chips become more clear with the cutting speed. The lower cutting force and cutting temperature are achieved by the TiN/TiCN/TiAlN multi-coated tool. The flank wear was the dominant wear form in the milling process of AISI 4340. The dominant wear mechanisms of the coated tools include the crater wear, coating chipping, adhesion, abrasion, and diffusion. In general, a TiN/TiCN/TiAlN multi-coated tool is the most suitable tool for high-speed milling of AISI 4340, due to the lower cutting force, the lower cutting temperature, and the high resistance of the element diffusion.


2018 ◽  
Vol 30 ◽  
pp. 1-7 ◽  
Author(s):  
Fatih Hayati Çakır ◽  
Mehmet Alper Sofuoğlu ◽  
Selim Gürgen

Nickel-based alloys provide high corrosion resistance and high-temperature strength but these alloys possess poor machinability. Hastelloy-X is a nickel based alloy that has been used for high temperature use. There are many studies about finite element modeling of aerospace alloys but studies in literature with Hastelloy-X are limited. In the present work, machining characteristics of Hastelloy-X were investigated and a numerical model was developed for the turning operation of Hastelloy-X. Two input parameters (cutting speed and feed rate) were variated in the operations and the results were evaluated considering process outputs such as cutting forces, cutting temperature, effective stresses and chip morphology. Based on the verification of the numerical model using experimental results, presented material model is appropriate for the turning operation of Hastelloy-X at low and medium cutting speed machining conditions.


2014 ◽  
Vol 974 ◽  
pp. 136-140 ◽  
Author(s):  
Suresh Palanisamy ◽  
R.A. Rahman Rashid ◽  
Milan Brandt ◽  
Matthew S. Dargusch

For more than three decades, the machining industry has been employing coated tools to enhance productivity via improving tool life. Nonetheless, the problems associated with machining titanium alloys have been still prevalent. Advanced alloy materials such as diamond-like carbon (DLC) coatings are developed to combat these issues. In this study, the performance of a DLC coated tool is assessed and its tool wear mechanisms investigated. For the cutting conditions used during these trials, it has been identified that the DLC coated tool exhibited severe tool wear due to delamination and diffusion in comparison with the uncoated carbide tools. In conclusion, it is suggested that the performance of the DLC coated tools can be enhanced by applying alternate strategies to remove heat from the cutting region.


2014 ◽  
Vol 695 ◽  
pp. 676-679 ◽  
Author(s):  
Abdullah Yassin ◽  
Chong Yaw Teo

This paper presents an experimental investigation on effects of pressure and nozzle angle of minimal quantity lubrication (MQL) on cutting temperature and flank wear in turning. In manufacturing industries, there are always demands for the optimum cutting conditions for the most economical manufacturing cost. Hence, reduction in tool wear is essential for less expenditure with the knowledge of optimum cutting conditions of MQL. MQL, also known as near dry machining, has been acknowledged as an effective cooling technique in machining by applying vegetable oils in replacing the conventional flooding method due to environmental issues. By varying the operating pressures and nozzle angle with respect to the cutting zone, cutting temperature and flank wear are measured using a calibrated tool work thermocouple and SPG video microscope. Comparison was made between dry cutting, water mist cooling and MQL method with palm oil. Results showed that MQL with palm oil exhibits best cooling efficiency at 5 bar pressure and nozzle angle of 20o with reduction of 35% in tool wear and 23% in cutting temperature at higher cutting speeds.


Sign in / Sign up

Export Citation Format

Share Document