scholarly journals Effects of supplementation with heat shock cognate 17 KDA protein (HSC70) on in vitro bovine embryo viability

Author(s):  
Aimé Jazmín Garza Arredondo ◽  
Diana Elisa Zamora Ávila ◽  
Uziel Castillo Velásquez ◽  
Gustavo Moreno Degollado ◽  
José Fernando De La Torre Sánchez ◽  
...  

Abstract Endogenous heat shock cognate 71 kDa protein (HSC70) has a vital role in early embryonic development. This study assessed the effects of exogenous HSC70 on bovine embryo development and expression of genes associated with apoptosis. Expression analyses of HSPA1A, HSPA8, Bcl-2, and Bax genes were performed in bovine embryos in vivo on day 7 of development. Subsequently, expression of HSPA1A and HSPA8 were associated with apoptotic genes (Bcl-2 and Bax) in cultured bovine embryos in vitro that were supplemented with various concentrations (0 or control group, 50, and 100 ng) of HSC70. The results indicated that the control group (0 ng) in vitro embryos had higher expression of HSPA8, Bax, and Bcl-2 genes, compared with the vivo embryos (P < 0.01). In vitro-produced embryos supplemented with 50 ng or 100 ng HSC70 had higher expression of HSPA1A, HSC70, Bcl-2, and Bax genes, compared with the control group (P < 0.01). Embryos supplemented with 100 ng had greater expression of the HSPA8 gene compared with the control group and the group supplemented with 50 ng. However, embryos supplemented with 50 ng had better characteristics (i.e., stage of development and quality) than the control and 100-ng groups. In conclusion, supplementation of in vitro culture medium with HSC70 promoted development to the blastocyst stage and improved blastocyst quality.

2000 ◽  
Vol 8 (3) ◽  
pp. 241-287 ◽  
Author(s):  
GM Jones

The transfer of a blastocyst established the first human clinical pregnancy following in vitro fertilization (IVF). Nine years later Cohen et al. reported pregnancies resulting from the transfer of cryopreserved human blastocysts. However, it was another six years before the first report of births resulting from the transfer of human blastocysts produced in vitro appeared in the medical literature. In the intervening period clinics have opted to transfer embryos at the early cleavage stage to the uterus, despite the fact that in vivo the embryo does not enter the uterus until two to three days later at the morula to blastocyst stage of development. The viability and potential for implantation of blastocysts is high, as indicated by the finding that more than 60% of in-vivo-derived blastocysts, recovered by uterine lavage following artificial insemination of fertile donors, implant and develop into viable fetuses when transferred to recipients. This is in stark contrast to the 10–20% of in-vitro-produced embryos transferred at the early cleavage stage of development that result in a live-birth. This reduction in viability following transfer of in-vitro-derived early cleavage stage embryos may have several possible explanations: (1) a failure of implantation due to poor synchronization between the embryo and the uterine endometrium; (2) a hostile environment in the uterus for early cleavage stage embryos; (3) sub-optimal in vitro culture conditions which result in a reduction in embryo viability; (4) the assumption that all oocytes retrieved in an IVF cycle have an equal ability to develop into viable embryos; and (5) the failure to identify the most viable embryo in a cohort. Certainly, improving culture conditions and laboratory techniques for developing high quality blastocysts routinely in vitro will not only address many of the above questions but will also improve the quality and viability of earlier stages of embryo development.


2005 ◽  
Vol 17 (2) ◽  
pp. 219 ◽  
Author(s):  
C.E. Ferguson ◽  
T.R. Davidson ◽  
M.R.B. Mello ◽  
A.S. Lima ◽  
D.J. Kesler ◽  
...  

There has been much debate over a direct role for progesterone (P4) in early bovine embryo development. While previous attempts to supplement bovine embryos in vitro with P4 produced results that vary and are often contradictory, this may be a response of administering P4 at inappropriate times. Therefore, the objective of these experiments was to determine if P4 could exert a direct effect on developing IVF-derived bovine embryos when administered at an appropriate time of embryo development. In Exp. I, IVF-derived bovine 8-cell embryos were randomly allotted to treatments: (1) control, CR1aa medium (n = 168); (2) vehicle, CR1aa + ETOH (0.01%) (n = 170); and (3) P4, CR1aa + ETOH + P4 (20 ng/mL in 50-μL droplet) (n = 173). In Exp. II, IVF-derived bovine 8-cell embryos were randomly allotted to treatments: (1) control, CR1aa medium (n = 160); (2) vehicle, CR1aa + DMSO (0.01%) (n = 180); and (3) P4, CR1aa + DMSO (0.01%) + P4 (20 ng/mL in 50-μL droplet) (n = 170). All embryos were evaluated on Days 6 to 9 post-insemination and rates calculated from 8-cell embryos. In Exp. I, ETOH tended to have a detrimental effect with significantly fewer (P < 0.05) embryos (53%) developing to the blastocyst stage on Day 7 compared with the control (62%) and P4 (71%) groups. At Day 7, significantly more embryos cultured in P4 (71%) developed to the blastocyst stage compared with the control group (62%). P4 treatment significantly increased the number of Grade 1 blastocysts (25%) on Day 7 compared with vehicle (15%) and control (17%) groups. At the end of culture, there were also significantly more Day 9 hatched blastocysts in the P4 group (33%) compared with vehicle (22%) and control (21%) groups. Supplementing P4 in the culture medium increased the rate of development, resulting in significantly more blastocysts (8%) on Day 6 and hatched blastocysts (21%) on Day 8 compared with vehicle (3% and 12%) and control (0% and 8%) groups, respectively. In Exp. II, there were no significant differences between treatment groups for Day 7 blastocysts (control 54%, DMSO 61%, P4 57%) and Day 9 hatched blastocysts (control 46%, DMSO 51%, P4 46%). However, there were significantly more Grade 1 blastocysts in the P4 group (22% and 36%) on Days 6 and 8 compared with vehicle (11% and 23%) and control (13% and 23%) groups, respectively. The lack of improvement in Day 7 blastocysts and Day 9 hatched blastocysts rates leads to further uncertainty in understanding the P4 vehicle interactions. In conclusion, the results of these two experiments indicate that P4 can exert a direct effect on the developing IVF-derived bovine embryo; however, due to P4 vehicle interactions; other inert vehicles need to be explored to further evaluate the direct effects of P4 on the developing bovine embryo.


2010 ◽  
Vol 22 (1) ◽  
pp. 238
Author(s):  
I. P. Emanuelli ◽  
B. F. Agostinho ◽  
M. P. M. Mancini ◽  
C. M. Barros ◽  
M. F. G. Nogueira

Embryonic chimeras have been used as a tool to understand embryogenesis and organogenesis, as well as to prove, in vivo, the pluripotency of the embryonic stem cells. One of the techniques used to obtain embryonic chimeras is aggregation, which can be performed with intact or half-embryos and in different stages of the development, produced by in vivo or in vitro systems and in different wells. However, its efficiency tends to reduce when advanced stages, such as morulae and blastocysts, are used. The aim of this work was to evaluate the effect of the treatment with an agglutinating agent (phytohemagglutinin-L; PHA) in the percentage of chimeras produced with IVF bovine embryos. Bovine ovaries (from abattoir) were used to obtain 270 COC that were matured in drops (90 μL) of TCM-199 bicarbonate medium, supplemented with 10% of FCS, and incubated in vitro for 22 to 24 h. The fertilization occurred in TALP-IVF medium, and the COC were maintained in the incubator for 18 h. After fertilization, the presumptive zygotes were transferred to SOF culture medium to in vitro culture. In vitro maturation, fertilization, and culture were performed under 38.5°C, 5% CO2 in air and saturated humidity. The chimerism by aggregation was tested between 2 intact (zona-free) 8- to 16-cell stage embryos in the presence (G1, n = 16) or absence of PHA (G2, n = 14) and between one half-morula and one half-blastocyst with (G3, n = 15) or without PHA (G4, n = 12). The embryos in groups G1 and G3 were treated with PHA in a concentration of 500 μLg mL-1 for 3 min. After PHA treatment, the pairs of embryos were allocated in wells, under previously described culture conditions, until expanded blastocyst stage could be observed (Day 7 of culture). At 24 h of culture, embryonic aggregation pairs were first evaluated to detect only cohesive masses of cells. The results (chimerism rate) were 62.5%, 42.9%, 40.0%, and 25.0%, respectively, for groups G1, G2, G3, and G4. There were no significant differences neither among groups (chi-square, P = 0.252) nor between G1 and G2 (P = 0.464), G3, and G4 (P = 0.683; Fisher’s exact test). Main effects as use of PHA (G1 + G3 v. G2 + G4, P = 0.284) and stage of embryos (G1 + G2 v. G3 + G4, P = 0.183; Fisher’s exact test) were not statistically significant. However, when all groups were compared, the power of the performed test (0.354) was below the desired power of 0.800 (i.e. one must be cautious in over-interpreting the lack of difference among them). In the conditions of this study, it was concluded that the treatment with PHA did not increase the rate of aggregation in the embryonic chimera production, even for half-embryos in advanced stage of development (morulae and blastocysts). Granted by FAPESP, Brazil: 06/06491-2 and 07/07705-9 (MFGN) and 07/04291-9 (MPMM).


2010 ◽  
Vol 22 (1) ◽  
pp. 231
Author(s):  
C. Y. Choe ◽  
S. R. Cho ◽  
J. K. Son ◽  
S. H. Choi ◽  
C. Y. Cho ◽  
...  

Oxygen consumption has been regarded as a useful indicator for assessment of mammalian embryo quality. This study was carried out to identify whether oxygen consumption rates measured in bovine embryos using SECM can be used as a standard criteria to evaluate bovine embryo quality. Oxygen consumption of bovine embryos at various developmental stages was measured and analyzed using SECM and ANOVA analysis, respectively. We found that the oxygen consumption significantly increased in blastocyst-stage embryos compared to other stage embryos (from 2-cell stage to morula stage), indicating that oxygen consumption reflects the cell number (5.2-7.6 × 1014 mol-1 s-1 v. 1.2-2.4 × 1014 mol-1 s-1, P < 0.05). There was no significant difference between 2-cell-stage embryos and 8-cell-stage embryos. In the morula-stage embryos, the oxygen consumption of in vivo derived embryos was significantly higher than that of in vitro produced embryos (4.0 × 1014 mol-1 s-1 v. 2.4 × 1014 mol-1 s-1, P < 0.05). However, there was no significant difference in consumption of oxygen by in vivo and in vitro derived bovine blastocyst-stage embryos (P > 0.05). Good-quality embryos with grade 1 or 2 showed significantly higher oxygen consumption than grade 3 or 4 embryos. These results showed that SECM could measure oxygen consumption in bovine embryos and the oxygen consumption could reflect embryonic development stage and embryo quality.


2008 ◽  
Vol 20 (1) ◽  
pp. 184
Author(s):  
K. J. Mattson ◽  
B. R. Devlin ◽  
N. M. Loskutoff

According to the Manual of the International Embryo Transfer Society, trypsin can be used to remove certain pathogenic agents from in vivo-derived embryos. Research is currently in progress to determine whether trypsin can also remove pathogenic agents from semen. The original research on embryos involved the use of trypsin from pig pancreatic extracts. Because of stricter guidelines from international regulatory agencies on the use of animal products, several recombinant serine protease products are now becoming available. TrypZean (Sigma, St. Louis, MO, USA) is a recombinant developed from corn and is the first bovine sequence recombinant trypsin to contain no animal by-products. As part of our ongoing research on the effects of trypsin on sperm, the goal of this investigation was to examine the development of bovine embryos produced from sperm treated with the recombinant TrypZean compared with pig pancreas trypsin (Sigma) and a control (no trypsin). Oocyte aspiration, maturation, fertilization, and embryo culture were performed using standard methods in 9 replications. Semen was collected and pooled from Bos taurus and frozen in an egg-yolk cryodiluent (Biladyl, Minitube, Verona, WI). The semen was processed using density gradient centrifugation composed of 1 mL of 30% Percoll (Sigma), layered over 2 mL of 45% Percoll containing either 0.25% TrypZean (n = 972 oocytes), 0.25% trypsin (n = 1040 oocytes), or no trypsin for the control group (n = 1024 oocytes). The bottom layer for the 2 treatments and control was 2 mL of 90% Percoll containing 10 µg mL–1 of soy-based protease inhibitor (Sigma). The density gradients were centrifuged at 700g for 30 min, after which time the pellets were washed in 5 mL of prewarmed TL HEPES Solution (Cambrex) and centrifuged at 300g for 10 min. The resulting sperm pellets were then resuspended in a volume calculated to provide 1 � 106 sperm mL–1 for in vitro insemination. The results were compared using one-way ANOVA. There were no statistically significant differences (P > 0.05) between any of the measures of embryonic development for the control and either of the treatment groups. Cleavage rates were measured for TrypZean (n = 689, 70.9%), trypsin (n = 729, 70.1%), and the control (n = 757, 73.9%) groups. More embryos reached the morula to blastocyst stages with the TrypZean (n = 367, 53.3%) and trypsin (n = 389, 53.4%) groups than the control (n = 369, 48.7%) group; however, these differences also were not statistically significant (P = 0.91) because of the large variation within the groups. In conclusion, the TrypZean and pig pancreas trypsin treatments of sperm prior to insemination showed no detrimental effects on IVF-derived bovine embryo development.


2021 ◽  
Vol 22 (3) ◽  
pp. 1222
Author(s):  
Cristina Cuello ◽  
Cristina A. Martinez ◽  
Josep M. Cambra ◽  
Inmaculada Parrilla ◽  
Heriberto Rodriguez-Martinez ◽  
...  

This study was designed to investigate the impact of vitrification on the transcriptome profile of blastocysts using a porcine (Sus scrofa) model and a microarray approach. Blastocysts were collected from weaned sows (n = 13). A total of 60 blastocysts were vitrified (treatment group). After warming, vitrified embryos were cultured in vitro for 24 h. Non-vitrified blastocysts (n = 40) were used as controls. After the in vitro culture period, the embryo viability was morphologically assessed. A total of 30 viable embryos per group (three pools of 10 from 4 different donors each) were subjected to gene expression analysis. A fold change cut-off of ±1.5 and a restrictive threshold at p-value < 0.05 were used to distinguish differentially expressed genes (DEGs). The survival rates of vitrified/warmed blastocysts were similar to those of the control (nearly 100%, n.s.). A total of 205 (112 upregulated and 93 downregulated) were identified in the vitrified blastocysts compared to the control group. The vitrification/warming impact was moderate, and it was mainly related to the pathways of cell cycle, cellular senescence, gap junction, and signaling for TFGβ, p53, Fox, and MAPK. In conclusion, vitrification modified the transcriptome of in vivo-derived porcine blastocysts, resulting in minor gene expression changes.


2007 ◽  
Vol 19 (1) ◽  
pp. 288
Author(s):  
C. Kubota ◽  
T. Kojima ◽  
T. Nagai ◽  
X. Tian ◽  
X. Yang

The timing of IVM–IVF–IVC is restricted by the onset of oocyte maturation, and sometimes oocytes must be treated at midnight. If we could regulate the timing of IVM of oocytes without decreasing their developmental competence, the IVM–IVF–IVC system could be a more applied technology. The present study was performed to examine the effects of in vitro storage of bovine oocytes in simple media prior to maturation culture to manipulate the start of IVM. Bovine follicular fluid (bFF), Dulbecco&apos;s PBS (PBS), M199 Earle salts (M199), and Earle salts supplemented with 5 mM NaHCO3 (M199A) were used as the fundamental media, after an addition of antibiotics, for in vitro storage of bovine cumulus&ndash;oocyte complexes (COCs) collected from ovaries obtained at the slaughterhouse. The fundamental media except for bFF were supplemented with 10&percnt; fetal bovine serum (FBS) or 1 mg mL&minus;1 polyvinyl alcohol (PVA). COCs were collected from follicles (3&ndash;8 mm in diameter) and washed twice in each medium; then approximately 50 COCs were submerged in 1 mL of each medium in cryotubes (Falcon #2812, 2.5 mL; Becton Dickinson Labware, Lincoln, NJ, USA), which were stored in a container kept at 38.5&deg;C for 22 h under air-closed condition (in vitro storage: IVS). Subsequently, the stored COCs were in vitro-matured (IVM) for 22 h in M199 with 10&percnt; FBS and 20 &micro;g mL&minus;1 estradiol, fertilized (IVF), and cultured in CR1aa (IVC) for examination of their development to the blastocyst stage (Kubota et al. 1998 Mol. Reprod. Dev. 51, 281&ndash;286). Fresh oocytes without IVS were used as controls. The nuclear status of oocytes after IVS&ndash;IVM was compared to that of control oocytes by aceto-orcein stain. Their developmental rates to the blastocyst stage after IVM&ndash;IVF&ndash;IVC were compared between experimental and control groups. The experiment was repeated more than 3 times, and results were statistically analyzed using Student&apos;s t-test. When bFF and PBS supplemented with FBS or PVA were used for IVS, the rates of survived COCs after IVS and the development to the blastocyst stage after IVM&ndash;IVF&ndash;IVC (bFF (n &equals; 87): 0&percnt;, 0&percnt;; PBS/FBS (n &equals; 72): 84&percnt;, 1&percnt;; and PBS/PVA (n &equals; 81): 89&percnt;, 6&percnt;, respectively) were significantly lower than those of the control group (n &equals; 406; 97&percnt; and 29&percnt;, respectively). On the other hand, when M199A supplemented with FBS or PVA was used for IVS, the survival rate after IVS and the developmental rate to the blastocyst stage after IVS&ndash;IVM&ndash;IVF (M199A/FBS (n &equals; 97): 82&percnt;, 28&percnt;; and M199A/PVA (n &equals; 111): 98&percnt;, 31&percnt;, respectively) did not differ from those of the control group. After IVS, cumulus expansion was not seen and most of the oocyte nuclei reached the GVBD stage. These results suggest that the nuclear maturation progress of bovine oocytes can be regulated for at least 22 h in M199A without any deleterious influence on the number of oocytes surviving at an immature state after the storage and their subsequent development to the blastocyst stage after IVM&ndash;IVF&ndash;IVC. The delayed maturation allows a flexible fertilization schedule which is advantageous in research and industrial applications.


2014 ◽  
Vol 26 (1) ◽  
pp. 155
Author(s):  
L. Baldoceda ◽  
C. Vigneault ◽  
P. Blondin ◽  
C. Robert

Mitochondria play an important role during early mammalian embryo development through their diverse cellular functions, in particular creating balance between production of ATP by electron transport chain and oxidative stress. Embryonic mitochondria are inherited maternally and independently of the nuclear genome. They show limited activity during the early developmental stages before embryonic genome activation. It has been shown that in vitro culture (IVC) has an adverse effect on mitochondrial function in embryos. So far several attempts have been performed to improve and rescue the impaired mitochondria. It has been shown that vitamin K2 (a membrane-bound electron carrier, similar to ubiquinone) was used to rescue mitochondrial dysfunction and resulted in more efficient ATP production in eukaryotic cells (Vos et al. 2012 Science 336, 1306–1310). Therefore, the aim of the present study was to investigate the effects of supplementation of vitamin K2 on mitochondrial activity and blastocyst rate. Cumulus–oocytes complexes (n = 687) recovered from slaughtered animals, were matured and fertilized in vitro according to our standard procedures. After fertilization, zygotes were cultured in SOF media supplemented with 10 mg mL–1 BSA. At 96 h post-fertilization, vitamin K2 was added to the culture media (n = 448 oocytes). On Day 7, treatment embryos were compared with untreated controls (n = 239 oocytes). In vitro culture was carried out at 38.5°C under 5% CO2, 7% O2, and 88% N2. Differences among groups in blastocyst yield were analysed by ANOVA. Mitochondrial activity data was analysed by unpaired 2-tailed t-tests. Results show that the vitamin K2-treated group had a significantly (P < 0.05) higher blastocyst rate (+8.6%), expanded blastocyst rate (+7.8%), as well as better morphological quality compared with the control group. Furthermore, to evaluate mitochondria activity, pools of embryos of each treatment were labelled with a specific dye for active mitochondria (Mitotracker Red). A significantly higher intensity of Mitotracker Red (P < 0.05) was observed in the vitamin K2 treatment versus control group, as measured by fluorescent microscopy. In conclusion, for the first time, our data prove that supplementation of vitamin K2 during IVC of bovine embryos increases blastocyst rates and embryo quality. Future studies will focus on gene expression to identify targets implicated in impaired mitochondrial activity in in vitro bovine embryo production.


2012 ◽  
Vol 24 (1) ◽  
pp. 199
Author(s):  
S. Di Francesco ◽  
M. Rubessa ◽  
L. Boccia ◽  
M. De Blasi ◽  
P. Stiuso ◽  
...  

In vitro-produced embryos are less viable than their in vivo counterparts. It is known that the developmental speed is a reliable marker of embryo viability. One of the major factors impairing in vitro embryo development is oxidative stress. The aim of the study was to evaluate oxidative stress and lipid peroxidation in bovine in vitro-produced embryos that reached different developmental stages at the end of culture. Abattoir-derived oocytes were matured in vitro in TCM-199 with 15% bovine serum, 0.5 μg mL–1 of FSH, 5 μg mL–1 of LH, 0.8 mM L-glutamine and 50 mg mL–1 of gentamicin. Mature cumulus–oocyte complexes (COC) were fertilized in Tyrode's modified medium, supplemented by 5.3 SI mL–1 of heparin, 30 μM penicillamine, 15 μM hypotaurine, 1 μM epinephrine and 1% of bovine serum. Both in vitro maturation and IVF were carried out at 39°C and 5% CO2 in air. After 20 to 22 h of gamete co-incubation, presumptive zygotes were denuded and cultured in SOF for 7 days at 39°C under humidified air with 5% CO2, 7% O2 and 88% N2 in air. At the end of culture, embryos were assessed according to the stage of development as tight morulae (TM), early blastocysts (eBl), blastocysts (Bl), expanded blastocysts (XBl) and hatched blastocysts (HBl). For each stage of development, an average of 20 embryos were used to determine manganese superoxide dismutase (MnSOD) activity and levels of nitric oxide (NO2–) and thiobarbituric acid-reactive substances (TBARS). The SOD activity was determined by a colourimetric method (Caraglia M et al. 2011 Cell Death Dis. 2, 150, doi:10.1038/cddis.2011.34) whereas NO2– and TBARS were measured by a spectrophotometric method (Balestrieri et al. 2011 J. Cell. Physiol. doi:10.1002/jcp.22874). Data were analysed by t-test. Greater (P < 0.05) MnSOD activity was observed in faster developing embryos (i.e. XBl and HBl) compared with slower ones (i.e. TM, eBl and Bl; 0.46 ± 0.04, 0.46 ± 0.03, 0.14 ± 0.01, 1.66 ± 0.01 and 3.26 ± 0.3 U μg–1 of protein, in TM, eBl, Bl, XBl and HBl, respectively). At the same time, XBl and HBl showed the lowest NO2– levels. However, NO2– values were lower in TM compared with eBl and Bl (0.04 ± 0.002, 0.07 ± 0.005, 0.06 ± 0.003, 0.01 ± 0.002 and 0.01 ± 0.001 nM μg–1 of protein, in TM, eBl, Bl, XBl and HBl, respectively). Similarly to NO2–, TBARS levels were lower in XBl and HBl compared with the other stages (0.0059 ± 0.002, 0.009 ± 0.003, 0.006 ± 0.002, 0.001 ± 0.0001 and 0.0009 ± 0.0002 μM μg–1 of protein, in TM, eBl, Bl, XBl and HBl, respectively). In conclusion, these results clearly indicate developmental stage-dependent changes in MnSOD activity and levels of NO2– and TBARS, suggesting that oxidative stress and lipid peroxidation are reduced in faster developing embryos.


2015 ◽  
Vol 27 (1) ◽  
pp. 209
Author(s):  
T. Fanti ◽  
N. M. Ortega ◽  
R. Garaguso ◽  
M. J. Franco ◽  
C. Herrera ◽  
...  

In vitro embryo production systems (IVP) try to emulate and enhance molecular events that occur in in vivo reproductive systems in order to increase, not only the number of embryos generated, but also their quality. Despite advances, IVP processes are still inefficient compared with in vivo systems. Several studies have attributed this deficiency to a lack of oocyte competence due to spontaneous premature resumption of meiotic maturation in the oocyte following the removal from its follicular environment. Therefore, our objective was to increase oocyte competence avoiding premature resumption of meiosis by using cyclic adenosine monophosphate modulators. Cumulus-oocyte complexes (COC) were obtained from ovaries of slaughterhouses, washed, and randomly allocated in 2 culture systems. Oocytes in the control group (IVM) were cultured for a period of 24 h in basal medium TCM-199 with EGF (1 µg mL–1) supplemented with rhFSH (25 mIU mL–1). Oocytes in the biphasic in vitro maturation (b-IVM) group were cultured for 2 h in a basal medium supplemented with a phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX, 500 µM), and an activator of adenylate cyclase (forskolin, 100 µM). Subsequently, COC were washed and cultured in basal medium supplemented with cilostamide (20 µM) and rhFSH (25 mIU mL–1) for 24 h. Maturation rates were analysed and IVF was performed with a dose of 1 × 106 sperm cells mL–1 in IVF-SOF medium. The presumptive zygotes were cultured in continuous-single-culture medium (Irvine) supplemented with 8 mg mL–1 of BSA until they reached the blastocyst stage. No significant differences in maturation, cleavage, and cryotolerance were observed between b-IVM and IVM groups (P > 0.05; Table 1). This study showed that b-IVM produced a significant increase in IVP compared with the control (IVM) at Days 7 and 8 (P < 0.01). Blastocyst hatching rate was significant (P < 0.05) for both treatment and day of analysis. The b-IVM group yielded an increase of 10 and 7.5% at Days 7 and 8, respectively, of IVP. The biphasic maturation showed an improvement in quality regarding the control group, in the timing analysis of production, and hatching percentages, and these results show that the use of cyclic adenosine monophosphate modulators in the oocyte maturation process enhances oocyte competence, which is reflected in increased productivity and embryo quality. We propose this treatment as an alternative to the standard protocols currently used in IVP of bovine embryos. Table 1.Effect of treatment on maturation, cleavage, and cryotolerance


Sign in / Sign up

Export Citation Format

Share Document