scholarly journals Quercetin and Vitamin E ameliorate cardio-apoptotic risks in diabetic rats

Author(s):  
Oluwatoyin Ojo ◽  
Ifedayo M. Obaidu ◽  
Oluwatosin C. Obigade ◽  
Olufunso O. Olorunsogo

Abstract Background: Apoptosis is upregulated in all forms of diabetes, with the mitochondria acting as a target in diabetes pathophysiology. Quercetin and vitamin E have shown usefulness in the delay of progression of diabetes-induced complications. However, their effect on the apoptotic process in diabetes mellitus is unknown. We hypothesize that quercetin treatment in diabetes may decrease the propensity for cardio-myocytic death via regulation of the mitochondria permeability transition (mPT) pore opening. Methods: Hearts from normal and streptozotocin-induced diabetic rats were used for the study. Low-ionic strength heart mitochondria were used for swelling assay, and mitochondrial lipid peroxidation (mLPO) activity was spectrophotometrically assessed. Levels of cytochrome c, caspase 3 and 9 were determined by immunohistochemistry, while lesions assessed by histology.Discussion: Diabetic heart mPT pore showed larger amplitude swelling than control, while mLPO levels was increased in diabetic rats relative to control, this resulted in cytochrome c release. This initiated increased caspase 3 and 9 activity in diabetic rats (p<0.05). Histology showed haemorrphagic lesions in diabetic rat hearts. Quercetin and vitamin E treatment reversed these effects, suggestive of their anti-apoptotic effect. Conclusions: Quercetin and vitamin E protection in diabetes is mediated by mPT pore inhibition and modulation of mitochondrial-mediated apoptosis.

2014 ◽  
Vol 84 (1-2) ◽  
pp. 55-64 ◽  
Author(s):  
Fatemeh Zal ◽  
Zeinab Mahdian ◽  
Razieh Zare ◽  
Soghra Bahmanpour ◽  
Zohreh Mostafavi-Pour

This study was designed to assess oxidative damage and cell apoptosis in the uterus of rats with streptozotocin (STZ)-induced diabetes. The role of vitamin E (VE) and/or folic acid (FA) in the protection from such damage was also evaluated. The treatments were performed for 4 weeks on six groups of rats: 1) normal control 2) diabetic control 3) diabetic rats receiving olive oil as a vehicle (without VE) 4) diabetic rats treated with VE (200 mg/kg) in olive oil 5) diabetic rats treated with FA (25 mg/kg) and 6) diabetic rats treated with VE + FA (200 and 25 mg/kg, respectively). We measured the malondialdehyde level (MDA), glutathione content (GSH) and the activity of GSH peroxidase (GPx), GSH reductase (GR) and catalase. Changes in caspase-3 activity were quantified in uterine tissue to assess the rate of apoptosis. In the rat uterine tissues, MDA content and caspase-3 activity were significantly elevated, while GPx, GR and CAT activities and the GSH level were significantly decreased in the diabetic control compared with those in normal rats (p < 0.05). The combination of the vitamins (VE + FA) restored uterine GSH content and enzymatic activities of GPx, GR and CAT and reduced the MDA level (p < 0.05). A prominent reduction in apoptosis of uterine cells was detected in diabetic rats treated with two vitamins (p < 0.05). Overall, VE alone, not FA, produced results similar to those of the VE + FA combination. Thus, in the uterine tissue of diabetic rats, diabetes complications (that are caused by oxidative damage and apoptosis induction) can be prevented by the systemic administration of VE and FA.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 182 ◽  
Author(s):  
Massimo Malerba ◽  
Raffaella Cerana

Fusicoccin (FC) is a well-known phytotoxin able to induce in Acer pseudoplatanus L. (sycamore) cultured cells, a set of responses similar to those induced by stress conditions. In this work, the possible involvement of peroxynitrite (ONOO−) in FC-induced stress responses was studied measuring both in the presence and in the absence of 2,6,8-trihydroxypurine (urate), a specific ONOO− scavenger: (1) cell death; (2) specific DNA fragmentation; (3) lipid peroxidation; (4) production of RNS and ROS; (5) activity of caspase-3-like proteases; and (6) release of cytochrome c from mitochondria, variations in the levels of molecular chaperones Hsp90 in the mitochondria and Hsp70 BiP in the endoplasmic reticulum (ER), and of regulatory 14-3-3 proteins in the cytosol. The obtained results indicate a role for ONOO− in the FC-induced responses. In particular, ONOO− seems involved in a PCD form showing apoptotic features such as specific DNA fragmentation, caspase-3-like protease activity, and cytochrome c release from mitochondria.


2017 ◽  
Vol 95 (11) ◽  
pp. 1343-1350
Author(s):  
Aleksandra Vranic ◽  
Stefan Simovic ◽  
Petar Ristic ◽  
Tamara Nikolic ◽  
Isidora Stojic ◽  
...  

Currently, cardiovascular diseases are the leading cause of global mortality, while diabetes mellitus remains an important cause of cardiovascular morbidity. A recent study showed that patients with diabetes mellitus treated with mineralocorticoid receptor antagonists have improved coronary microvascular function, leading to improved diastolic dysfunction. In this study, we evaluated the influence of acute administration of spironolactone on myocardial function in rats with streptozotocin-induced diabetes mellitus, with special emphasis on cardiodynamic parameters in diabetic rat hearts. The present study was carried out on 40 adult male Wistar albino rats (8 weeks old). Rats were randomly divided into 4 groups (10 animals per group): healthy rats treated with 0.1 μmol/L of spironolactone, diabetic rats treated with 0.1 μmol/L of spironolactone, healthy rats treated with 3 μmol/L of spironolactone, and diabetic rats treated with 3 μmol/L of spironolactone. Different, dose-dependent, acute responses of spironolactone treatment on isolated, working diabetic and healthy rat heart were observed in our study. In healthy rats, better systolic function was achieved with higher spironolactone dose, while in diabetic rats, similar effects of low and high spironolactone dose were observed.


2007 ◽  
Vol 292 (3) ◽  
pp. E748-E755 ◽  
Author(s):  
Peter J. Adhihetty ◽  
Vladimir Ljubicic ◽  
David A. Hood

Chronic contractile activity of skeletal muscle induces an increase in mitochondria located in proximity to the sarcolemma [subsarcolemmal (SS)] and in mitochondria interspersed between the myofibrils [intermyofibrillar (IMF)]. These are energetically favorable metabolic adaptations, but because mitochondria are also involved in apoptosis, we investigated the effect of chronic contractile activity on mitochondrially mediated apoptotic signaling in muscle. We hypothesized that chronic contractile activity would provide protection against mitochondrially mediated apoptosis despite an elevation in the expression of proapoptotic proteins. To induce mitochondrial biogenesis, we chronically stimulated (10 Hz; 3 h/day) rat muscle for 7 days. Chronic contractile activity did not alter the Bax/Bcl-2 ratio, an index of apoptotic susceptibility, and did not affect manganese superoxide dismutase levels. However, contractile activity increased antiapoptotic 70-kDa heat shock protein and apoptosis repressor with a caspase recruitment domain by 1.3- and 1.4-fold ( P < 0.05), respectively. Contractile activity elevated SS mitochondrial reactive oxygen species (ROS) production 1.4- and 1.9-fold ( P < 0.05) during states IV and III respiration, respectively, whereas IMF mitochondrial state IV ROS production was suppressed by 28% ( P < 0.05) and was unaffected during state III respiration. Following stimulation, exogenous ROS treatment produced less cytochrome c release (25–40%) from SS and IMF mitochondria, and also reduced apoptosis-inducing factor release (≈30%) from IMF mitochondria, despite higher inherent cytochrome c and apoptosis-inducing factor expression. Chronic contractile activity did not alter mitochondrial permeability transition pore (mtPTP) components in either subfraction. However, SS mitochondria exhibited a significant increase in the time to Vmax of mtPTP opening. Thus, chronic contractile activity induces predominantly antiapoptotic adaptations in both mitochondrial subfractions. Our data suggest the possibility that chronic contractile activity can exert a protective effect on mitochondrially mediated apoptosis in muscle.


2004 ◽  
Vol 382 (3) ◽  
pp. 877-884 ◽  
Author(s):  
Bruno GUIGAS ◽  
Dominique DETAILLE ◽  
Christiane CHAUVIN ◽  
Cécile BATANDIER ◽  
Frédéric De OLIVEIRA ◽  
...  

Metformin, a drug widely used in the treatment of Type II diabetes, has recently received attention owing to new findings regarding its mitochondrial and cellular effects. In the present study, the effects of metformin on respiration, complex 1 activity, mitochondrial permeability transition, cytochrome c release and cell death were investigated in cultured cells from a human carcinoma-derived cell line (KB cells). Metformin significantly decreased respiration both in intact cells and after permeabilization. This was due to a mild and specific inhibition of the respiratory chain complex 1. In addition, metformin prevented to a significant extent mitochondrial permeability transition both in permeabilized cells, as induced by calcium, and in intact cells, as induced by the glutathione-oxidizing agent t-butyl hydroperoxide. This effect was equivalent to that of cyclosporin A, the reference inhibitor. Finally, metformin impaired the t-butyl hydroperoxide-induced cell death, as judged by Trypan Blue exclusion, propidium iodide staining and cytochrome c release. We propose that metformin prevents the permeability transition-related commitment to cell death in relation to its mild inhibitory effect on complex 1, which is responsible for a decreased probability of mitochondrial permeability transition.


1998 ◽  
Vol 143 (1) ◽  
pp. 217-224 ◽  
Author(s):  
Robert Eskes ◽  
Bruno Antonsson ◽  
Astrid Osen-Sand ◽  
Sylvie Montessuit ◽  
Christoph Richter ◽  
...  

Bcl-2 family members either promote or repress programmed cell death. Bax, a death-promoting member, is a pore-forming, mitochondria-associated protein whose mechanism of action is still unknown. During apoptosis, cytochrome C is released from the mitochondria into the cytosol where it binds to APAF-1, a mammalian homologue of Ced-4, and participates in the activation of caspases. The release of cytochrome C has been postulated to be a consequence of the opening of the mitochondrial permeability transition pore (PTP). We now report that Bax is sufficient to trigger the release of cytochrome C from isolated mitochondria. This pathway is distinct from the previously described calcium-inducible, cyclosporin A–sensitive PTP. Rather, the cytochrome C release induced by Bax is facilitated by Mg2+ and cannot be blocked by PTP inhibitors. These results strongly suggest the existence of two distinct mechanisms leading to cytochrome C release: one stimulated by calcium and inhibited by cyclosporin A, the other Bax dependent, Mg2+ sensitive but cyclosporin insensitive.


2005 ◽  
Vol 289 (6) ◽  
pp. H2310-H2318 ◽  
Author(s):  
Takayuki Okada ◽  
Hajime Otani ◽  
Yue Wu ◽  
Shiori Kyoi ◽  
Chiharu Enoki ◽  
...  

Activation of p38 mitogen-activated protein (MAP) kinase (MAPK) has been implicated in the mechanism of cardiomyocyte (CMC) protection and injury. The p38 MAPK controversy may be related to differential effects of this kinase on apoptosis and necrosis. We have hypothesized that p38 MAPK-mediated F-actin reorganization promotes apoptotic cell death, whereas it protects from osmotic stress-induced necrotic cell death. Cultured neonatal rat CMCs were subjected to 2 h of simulated ischemia followed by reoxygenation. p38 MAPK activity measured by phosphorylation of MAP kinase-activated protein (MAPKAP) kinase 2 was increased during simulated ischemia and reoxygenation. This was associated with translocation of heat shock protein 27 (HSP27) from the cytosolic to the cytoskeletal fraction and F-actin reorganization. Cytochrome c release from mitochondria, caspase-3 activation, and DNA fragmentation were increased during reoxygenation. Robust lactate dehydrogenase (LDH) release was observed under hyposmotic (140 mosM) reoxygenation. The p38 MAPK inhibitor SB-203580 abrogated activation of p38 MAPK, translocation of HSP27, and F-actin reorganization and prevented cytochrome c release, caspase-3 activation, and DNA fragmentation. Conversely, SB-203580 enhanced LDH release during hyposmotic reoxygenation. The F-actin disrupting agent cytochalasin D inhibited F-actin reorganization and prevented cytochrome c release, caspase-3 activation, and DNA fragmentation, whereas it enhanced LDH release during hyposmotic reoxygenation. When CMCs were incubated under the isosmotic condition for the first 15 min of reoxygenation, SB-203580 and cytochalasin D increased ATP content of CMCs and prevented LDH release after the conversion to the hyposmotic condition. These results suggest that F-actin reorganization mediated by activation of p38 MAPK plays a differential role in apoptosis and protection against osmotic stress-induced necrosis during reoxygenation in neonatal rat CMCs; however, the sarcolemmal fragility caused by p38 MAPK inhibition can be reversed during temporary blockade of physical stress during reoxygenation.


1983 ◽  
Vol 244 (6) ◽  
pp. H844-H851 ◽  
Author(s):  
R. V. Vadlamudi ◽  
J. H. McNeill

The isolated perfused working rat heart was used to study experimental diabetes-induced alterations in the effect of isoproterenol on adenosine 3',5'-cyclic monophosphate (cAMP) content, inotropy, and phosphorylase activity. Experimental diabetes was induced by intravenous injection of either alloxan (40 mg/kg) or streptozotocin (50 mg/kg). There were no changes in either basal cAMP levels or in isoproterenol-induced cAMP levels in hearts from diabetic rats at either 3 days or 100-120 days after induction of diabetes. Maximum changes produced by isoproterenol in positive and negative dP/dt developments of diabetic rat hearts were also not different from control at either time point. However, phosphorylase was activated to a significantly greater extent by isoproterenol in hearts obtained from acute as well as chronic diabetic rats. Chronic diabetic rat hearts exhibited significantly higher total phosphorylase activity. Diabetic rat hearts had slightly but not significantly higher basal phosphorylase a activity. Furthermore, prostaglandin E1 activated phosphorylase in diabetic rat hearts but not in control rat hearts. Acute metabolic derangements and alterations in Ca2+ homeostasis caused by diabetes could be the underlying causes for this phosphorylase response. Thyroid hormone levels were depressed in diabetic rats. However, hypothyroidism is probably not responsible for the alterations in phosphorylase activity.


Sign in / Sign up

Export Citation Format

Share Document