scholarly journals Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides

Author(s):  
Shuai Zhang ◽  
Baichang Li ◽  
Xinzhong Chen ◽  
Francesco Ruta ◽  
Yinming Shao ◽  
...  

Abstract Excitons play a dominant role in the optoelectronic properties of atomically thin van der Waals (vdW) semiconductors. These excitons are amenable to on-demand engineering with diverse controls, including dielectric screening, interlayer hybridization, and moiré potentials. However, external stimuli frequently yield heterogeneous excitonic responses at the nano- and meso-scales, making their spatial characterization with conventional diffraction-limited optics a formidable task. Here, we use a scattering-type scanning near-field optical microscope (s-SNOM) to acquire exciton spectra in atomically thin transition metal dichalcogenide microcrystals with previously unattainable 20 nm resolution. Our nano-optical data revealed material- and stacking-dependent exciton spectra of MoSe2, WSe2, and their heterostructures. Furthermore, we extracted the complex dielectric function of these prototypical vdW semiconductors. s-SNOM hyperspectral images uncovered how the dielectric screening modifies excitons at length scales as short as few nanometers. This work paves the way towards understanding and manipulation of excitons in atomically thin layers at the nanoscale.

2021 ◽  
Vol 7 (10) ◽  
pp. eabf3759
Author(s):  
Xiang Jiang ◽  
Qijing Zheng ◽  
Zhenggang Lan ◽  
Wissam A. Saidi ◽  
Xinguo Ren ◽  
...  

We develop an ab initio nonadiabatic molecular dynamics (NAMD) method based on GW plus real-time Bethe-Salpeter equation (GW + rtBSE-NAMD) for the spin-resolved exciton dynamics. From investigations on MoS2, we provide a comprehensive picture of spin-valley exciton dynamics where the electron-phonon (e-ph) scattering, spin-orbit interaction (SOI), and electron-hole (e-h) interactions come into play collectively. In particular, we provide a direct evidence that e-h exchange interaction plays a dominant role in the fast valley depolarization within a few picoseconds, which is in excellent agreement with experiments. Moreover, there are bright-to-dark exciton transitions induced by e-ph scattering and SOI. Our study proves that e-h many-body effects are essential to understand the spin-valley exciton dynamics in transition metal dichalcogenides and the newly developed GW + rtBSE-NAMD method provides a powerful tool for exciton dynamics in extended systems with time, space, momentum, energy, and spin resolution.


2021 ◽  
Vol 3 (1) ◽  
pp. 272-278
Author(s):  
Pilar G. Vianna ◽  
Aline dos S. Almeida ◽  
Rodrigo M. Gerosa ◽  
Dario A. Bahamon ◽  
Christiano J. S. de Matos

The scheme illustrates a monolayer transition-metal dichalcogenide on an epsilon-near-zero substrate. The substrate near-zero dielectric constant is used as the enhancement mechanism to maximize the SHG nonlinear effect on monolayer 2D materials.


Nanoscale ◽  
2021 ◽  
Author(s):  
Albert Bruix ◽  
Jeppe Vang Lauritsen ◽  
Bjork Hammer

Nanomaterials based on MoS2 and related transition metal dichalcogenides are remarkably versatile; MoS2 nanoparticles are proven catalysts for processes such as hydrodesulphurization and the hydrogen evolution reaction, and transition metal...


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonathan Förste ◽  
Nikita V. Tepliakov ◽  
Stanislav Yu. Kruchinin ◽  
Jessica Lindlau ◽  
Victor Funk ◽  
...  

Abstract The optical properties of monolayer and bilayer transition metal dichalcogenide semiconductors are governed by excitons in different spin and valley configurations, providing versatile aspects for van der Waals heterostructures and devices. Here, we present experimental and theoretical studies of exciton energy splittings in external magnetic field in neutral and charged WSe2 monolayer and bilayer crystals embedded in a field effect device for active doping control. We develop theoretical methods to calculate the exciton g-factors from first principles for all possible spin-valley configurations of excitons in monolayer and bilayer WSe2 including valley-indirect excitons. Our theoretical and experimental findings shed light on some of the characteristic photoluminescence peaks observed for monolayer and bilayer WSe2. In more general terms, the theoretical aspects of our work provide additional means for the characterization of single and few-layer transition metal dichalcogenides, as well as their heterostructures, in the presence of external magnetic fields.


2019 ◽  
Vol 6 (8) ◽  
pp. 190437 ◽  
Author(s):  
Santanu Mukherjee ◽  
Jonathan Turnley ◽  
Elisabeth Mansfield ◽  
Jason Holm ◽  
Davi Soares ◽  
...  

Growing concerns regarding the safety, flammability and hazards posed by Li-ion systems have led to research on alternative rechargeable metal-ion electrochemical storage technologies. Among the most notable of these are Na-ion supercapacitors and batteries, motivated, in part, by the similar electrochemistry of Li and Na ions. However, sodium ion batteries (SIBs) come with their own set of issues, especially the large size of the Na + ion, its relatively sluggish kinetics and low energy densities. This makes the development of novel materials and appropriate electrode architecture of absolute significance. Transition metal dichalcogenides (TMDs) have attracted a lot of attention in this regard due to their relative ease of exfoliation, diverse morphologies and architectures with superior electronic properties. Here, we study the electrochemical performance of Mo-based two-dimensional (2D) layered TMDs (e.g. MoS 2 , MoSe 2 and MoTe 2 ), exfoliated in a superacid, for battery and supercapacitor applications. The exfoliated TMD flakes were interfaced with reduced graphene oxide (rGO) to be used as composite electrodes. Electron microscopy, elemental mapping and Raman spectra were used to analyse the exfoliated material and confirm the formation of 2D TMD/rGO layer morphology. For supercapacitor applications in aqueous electrolyte, the sulfide-based TMD (MoS 2 ) exhibited the best performance, providing an areal capacitance of 60.25 mF cm −2 . For SIB applications, TMD electrodes exhibited significantly higher charge capacities than the neat rGO electrode. The initial desodiation capacities for the composite electrodes are 468.84 mAh g −1 (1687.82 C g −1 ), 399.10 mAh g −1 (1436.76 C g −1 ) and 387.36 mAh g −1 (1394.49 C g −1 ) for MoS 2 , MoSe 2 and MoTe 2 , respectively. Also, the MoS 2 and MoSe 2 composite electrodes provided a coulombic efficiency of near 100 % after a few initial cycles.


Nanoscale ◽  
2019 ◽  
Vol 11 (25) ◽  
pp. 12381-12387 ◽  
Author(s):  
Samuel Brem ◽  
Jonas Zipfel ◽  
Malte Selig ◽  
Archana Raja ◽  
Lutz Waldecker ◽  
...  

The reduced dielectric screening in atomically thin transition metal dichalcogenides allows to study the hydrogen-like series of higher exciton states in optical spectra even at room temperature.


Nanoscale ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 201-209 ◽  
Author(s):  
Songsong Zhou ◽  
Jinliang Ning ◽  
Jianwei Sun ◽  
David J. Srolovitz

Using alloying and/or twisting between layers to achieve the type I direct bandgaps vertical heterojunction in transition metal dichalcogenide family of MX2 (M = {Mo, W}, X = {S, Se}).


Nanoscale ◽  
2018 ◽  
Vol 10 (35) ◽  
pp. 16365-16397 ◽  
Author(s):  
Vipul Agarwal ◽  
Kaushik Chatterjee

Nanosheets of transition metal dichalcogenide (TMDs), the graphene-like two-dimensional (2D) materials, exhibit a unique combination of properties and have attracted enormous research interest for a wide range of applications including catalysis, functional electronics, solid lubrication, photovoltaics, energy materials and most recently in biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document