scholarly journals Cold Start Aware Hybrid Recommender System Approach for E-Commerce Users

Author(s):  
S Gopal Krishna Patro ◽  
Brojo Kishore Mishra ◽  
Sanjaya Kumar Panda ◽  
Raghvendra Kumar ◽  
Hoang Viet Long ◽  
...  

Abstract Collaborative Filtering (CF) schemes are very popular in Recommender System (RS) and offer specialized suggestions to users in e-commerce and social websites. But, they suffer from the Cold Start Problem (CSP) that occurs due to the lack of sufficient information about the new customers, purchase history, and browsing data. Moreover, data sparsity problems may arise when the interaction is made among a limited amount of items. This not only poses a negative impact on recommendation but also significantly condenses the diversity of choices available in the particular platform. To tackle these issues, a novel methodological approach called Sparsity and Cold Start Aware Hybrid Recommended System (SCSHRS) is designed to suppress data sparsity and CSP in RS. The proposed SCSHRS methodology comprises four stages. At the initial stage, the data sparsity is reduced and at stage 2, the similar users are grouped by Ant-Lion based k-means clustering. At stage 3, Higher-Order Singular Value Decomposition (HOSVD) method decomposes the data to a lesser dimension. At the final stage, the Adaptive Neuro-Fuzzy Inference System (ANFIS) uses IF-THEN rules and machine learning abilities to predict the output. The performance of the proposed SCSHRS method is tested on MovieLens-20M, Last. FM, and Book-Crossing datasets and compared with the prevailing techniques. Based on the evaluation report, the proposed SCSHRS system gives Mean Absolute Percentage Error (MAPE) of 40%, and, precision (0.16), recall (0.08), F-measure (0.1), and Normalized Discounted Cumulative Gain (NDCD) of 0.65. Hence, SCSHRS is proved to be a more efficient means of recommendation against cold start and sparsity problems.

2020 ◽  
Vol 39 (3) ◽  
pp. 4651-4665
Author(s):  
Sunkuru Gopal Krishna Patro ◽  
Brojo Kishore Mishra ◽  
Sanjaya Kumar Panda ◽  
Raghvendra Kumar ◽  
Hoang Viet Long ◽  
...  

A recommender system (RS) delivers personalized suggestions on products based on the interest of a particular user. Content-based filtering (CBF) and collaborative filtering (CF) schemes have been previously used for this task. However, the main challenge in RS is cold start problem (CSP). This originates once a new user joins the system which makes the recommendation task tedious due to the shortage of information (clickstream, dwell time, rating, etc.) regarding the user’s interest. Therefore, CBF and CF are combined together by developing a knowledge-based preference learning (KBPL) system. This system considers the demographic data that includes gender, occupation, and age for the recommendation task. Initially, the dataset is clustered using the self-organizing map (SOM) technique, then the high dimensional data is decomposed by higher-order singular value decomposition (HOSVD) and finally, Adaptive neuro-fuzzy inference system (ANFIS) predicts the output. For the big dataset, SOM is a robust clustering method and the similarities among the users can be easily observed by grid clustering. The HOSVD extracts the required information from the available data set to find the user similarity by decomposing the dataset in lower dimensions. ANFIS uses IF-THEN rules to recommend similar product to the new users. The proposed KBPL system is evaluated with the Black Friday dataset and the obtained error value is compared with the existing CF and CBF techniques. The proposed KBPL system has obtained root mean squared error (RMSE) of 0.71%, mean absolute error (MAE) of 0.54%, and mean absolute percentage error (MAPE) of 37%. Overall, the outcome of the comparative analysis shows minimum error and better performance in terms of precision, recall, and f-measure for the proposed KBPL system compared to the existing techniques and therefore more suitable for accurately recommending the products for the new users.


2018 ◽  
Vol 4 (1) ◽  
pp. 21-28
Author(s):  
Rayendra

To improve the graduation of Computer Literate Certified Professional (CLCP) competence test conducted by Competence Test of Information and Communication Technology (TUK-TIK) needs to be done continuous improvement by increasing try out competency test. Past values of the competency test can be used as modeling to predict the final score and the passing of the competency test. With the modeling can be predicted the passing of competency test participants through try out-try out done so that can be known weakness of candidate competency test from three units of CLCP competence. The modeling used to predict the final score and the passing of this competency test is the Adaptive Neuro Fuzzy Inference System (ANFIS) method. Used 20 past data of competency test participants with 6 criteria as input value from three CLCP competence units namely Word Processing, Spreadsheet, and Presentation. The resulting prediction is accurate enough with MAPE (Mean Absolute Percentage Error) value for each competency unit of 0.31492%, 0.284202%, and 0.267167%


Author(s):  
Tatang Rohana Cucu

Abstract - The process of admitting new students is an annual routine activity that occurs in a university. This activity is the starting point of the process of searching for prospective new students who meet the criteria expected by the college. One of the colleges that holds new student admissions every year is Buana Perjuangan University, Karawang. There have been several studies that have been conducted on predictions of new students by other researchers, but the results have not been very satisfying, especially problems with the level of accuracy and error. Research on ANFIS studies to predict new students as a solution to the problem of accuracy. This study uses two ANFIS models, namely Backpropagation and Hybrid techniques. The application of the Adaptive Neuro-Fuzzy Inference System (ANFIS) model in the predictions of new students at Buana Perjuangan University, Karawang was successful. Based on the results of training, the Backpropagation technique has an error rate of 0.0394 and the Hybrid technique has an error rate of 0.0662. Based on the predictive accuracy value that has been done, the Backpropagation technique has an accuracy of 4.8 for the value of Mean Absolute Deviation (MAD) and 0.156364623 for the value of Mean Absolute Percentage Error (MAPE). Meanwhile, based on the Mean Absolute Deviation (MAD) value, the Backpropagation technique has a value of 0.5 and 0.09516671 for the Mean Absolute Percentage Error (MAPE) value. So it can be concluded that the Hybrid technique has a better level of accuracy than the Backpropation technique in predicting the number of new students at the University of Buana Perjuangan Karawang.   Keywords: ANFIS, Backpropagation, Hybrid, Prediction


2016 ◽  
Vol 18 (4) ◽  
pp. 634-650 ◽  
Author(s):  
Yun Bai ◽  
Jingjing Xie ◽  
Xiaoxue Wang ◽  
Chuan Li

Considering the complexity of reservoir systems, a model fusion approach is proposed in this paper. According to different inflow information represented, the historical monthly data can be constructed as two time series, namely, yearly-scale series and monthly-scale series. Even grey model (EGM) and adaptive neuro-fuzzy inference system (ANFIS) are adopted for the forecasts at the two scales, respectively. Grey relational analysis (GRA) is subsequently used as a scale-normalized model fusion tool to integrate the two scales' results. The proposed method is evaluated using the data of the Three Gorges reservoir ranging from January 2000 to December 2012. The forecast performances of the individual-scale models are improved substantially by the suggested method. For comparison, two peer models, back-propagation neural network and autoregressive integrated moving average model, are also involved. The results show that, having combined together the small-sample forecast ability of the EGM in the yearly-scale, the nonlinearity of the ANFIS in the monthly-scale, and the grey fusion capability of the GRA, the present approach is more accurate for holistic evaluation than those models in terms of mean absolute percentage error, normalized root-mean-square error, and correlation coefficient criteria, and also for peak inflow forecasting in accordance with peak percent threshold statistics.


2021 ◽  
Author(s):  
Sonal Bindal

<p>In the recent years, prediction modelling techniques have been widely used for modelling groundwater arsenic contamination. Determining the accuracy, performance and suitability of these different algorithms such as univariate regression (UR), fuzzy model, adaptive fuzzy regression (AFR), logistic regression (LR), adaptive neuro-fuzzy inference system (ANFIS), and hybrid random forest (HRF) models still remains a challenging task. The spatial data which are available at different scales with different cell sizes. In the current study we have tried to optimize the spatial resolution for best performance of the model selecting the best spatial resolution by testing various predictive algorithms. The model’s performance was evaluated based of the values of determination coefficient (R<sup>2</sup>), mean absolute percentage error (MAPE) and root mean square error (RMSE). The outcomes of the study indicate that using 100m × 100m spatial resolution gives best performance in most of the models. The results also state HRF model performs the best than the commonly used ANFIS and LR models.</p>


2015 ◽  
Vol 8 (1) ◽  
pp. 369-384 ◽  
Author(s):  
K. Ramesh ◽  
A. P. Kesarkar ◽  
J. Bhate ◽  
M. Venkat Ratnam ◽  
A. Jayaraman

Abstract. The retrieval of accurate profiles of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve profiles of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using observations of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures observed by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these observations during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) profiles with independent radiosonde observations and profiles retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and observed profiles is more than 92% for temperature profiles for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature profiles. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) profiles using ANN and ANFIS also indicated that profiles retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of profiles concludes that retrieved profiles using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and ANFIS) has limited success.


2017 ◽  
Vol 2 (2) ◽  
pp. 97
Author(s):  
Mochammad Bagoes Satria Junianto

Kemajuan perkembangan teknologi informasi pada era globalisasi sekarang ini sangat pesat; hal ini menuntut setiap perusahaan untuk dapat saling bersaing dalam dunia bisnis yang dinamis dan penuh persaingan. Pada proses manjaemen permintaan dompet pulsa di XL Axiata cabang Depok memerlukan peramalan yang cukup matang agar dompet pulsa yang diminta kepada pusat tidak berlebihan atau tidak terlalu sedikit untuk menjaga kestabilan antara penjualan; persediaan dan jumlah permintaan. Untuk dapat melakukan peramalan yang lebih akurat; maka diperlukan suatu metode yang dapat menghitung ketidakpastian yang terjadi; dalam hal ini metode yang digunakan adalah dengan menggunakan Fuzzy inference system metode Mamdani untuk meramalkan jumlah permintaan dompet pulsa berdasarkan jumlah penjualan dan persediaan. Dengan 12 sample data untuk masing-masing sistem satuam yang digunakan hasil yang didapatkan yaitu dengan menggunakan Fuzzy inference system metode mamdani MAPE yang didapat sebesar 18;56% untuk Dompul XL 5k; 5;38% untuk Dompul XL 10k dan 14;2% untuk Dompul XL Rupiah.


Author(s):  
Yampi R. Kaesmetan

Rice (Oryza sativa) is a staple food source for the people of Indonesia. Most of the rice consumed is the result of national rice productivity. Often the government has difficulty in estimating the adequacy of basic food items that can be provided by domestic agriculture. Therefore a method is needed to predict rice yields accurately and precisely. The agricultural sector in East Nusa Tenggara is not a flagship of the community's economic activities. This is due to the geographical conditions of NTT which are less supportive for business activities in the agricultural sector. Even so, the prediction of agricultural products, especially rice yields, is needed to be predicted so that a forecast can be obtained in determining rice yields in 2017.  Fuzzy logic method in this case Fuzzy Inference System (FIS) is widely applied for forecasting or prediction. Fuzzy logic has a slowness in predicting crop yields for the following year based on crop yields in the previous year and information taken from the fuzzy information provided. Fuzzyinformation can be made a rule or rule as a consideration in predicting yields. By using the formula of Mean Absolute Percentage Error (MAPE) or Average Absolute Error, from the Fuzzy Mamdani model The Fuzzy Inference System (FIS) with the Mamdani model that has been built can be used to estimate the amount of rice production in the City District in NTT with the truth value reaching 97.8%. To determine the amount of rice production in 2017, the data is processed by using the help of the Matlab 2012 fuzzy toolbox software using the centroid method for defuzzification.


2015 ◽  
Vol 2 (3) ◽  
pp. 181
Author(s):  
Wiwi Widayani ◽  
Kusrini Kusrini ◽  
Hanif Al Fatta

Pertambahan jumlah penduduk Indonesia serta meningkatkannya permintaan industri akan bawang merah yang tidak diimbangi dengan jumlah produksi mendorong pemerintah membuka impor bawang merah. Impor dilakukan untuk menjaga keseimbangan harga dan pasokan bawang merah sehingga inflasi yang diakibatkan kenaikan harga bawang merah dapat ditekan, namun impor yang tidak tepat jumlah akan mengakibatkan kerugian bagi pihak petani, perlu adanya sistem pendukung dalam menentukan volume impor guna menjaga keseimbangan harga pasar dan pemenuhan kebutuhan bawang merah. Sistem pendukung keputusan yang dirancang menerapkan Fuzzy Inference System (FIS) Tsukamoto. Sistem yang dirancang memungkinkan pengguna untuk melakukan training data dan testing data, proses dalam training data yaitu : 1)Clustering data latih, menggunakan algoritma K-Means 2)Ekstraksi Aturan, 3)Testing data latih, hitung nilai impor dengan fuzzy Tsukamoto, 4)Menganalisa error hasil fuzzy menggunakan MAPE(Means Absolute Percentage Error), 5)Testing Data Uji dan menganalisa hasil error data uji. Hasil Uji Model menunjukan penentuan impor bawang merah dengan parameter input harga petani, harga konsumen, produksi, konsumsi, harga impor dan kurs terhadap 60 data latih menghasilkan error terendah sebesar 0.07 pada 12 cluster, hasil uji mesin inferensi terhadap data uji menghasilkan error sebesar 0.25. Indonesian population growth and increase industrial demand shallot is not matched with number of production prompted the government to opened shallot imports. Import done to maintain the balance price and supply of shallot so inflation caused by rising prices of onion can be suppressed, but not the exact amount of imports would result in losses for the farmers, support system in determining volume imports is need to maintain balance of market price and needs of shallot. Decision support system designed to apply Fuzzy Inference System (FIS) Tsukamoto. The system is allows the user to perform the training data and testing data, the training process performs are: 1) Clustering training data, using the K-Means algorithm 2) Extraction Rule, 3) Testing data, calculate imports value by fuzzy Tsukamoto, 4) analyze the results error using MAPE (Means Absolute Percentage error), 5) testing test data and analyze the results error. The results show the determination of imported shallot with input parameters producer prices, consumer prices, production, consumption, import prices and the exchange rate against 60 training data produces the lowest error of 0:07 in 12 clusters, the inference engine test resulted in an error of 0.25.


2017 ◽  
Vol 8 (2) ◽  
pp. 489
Author(s):  
Herliyani Hasanah ◽  
Nurmalitasari Nurmalitasari

Kebutuhan akan energi listrik menjadi kebutuhan primer nasional. Dalam keberlangsungan proses produksi energi listrik pada pembangkitan – pembangkitan diperlukan energi listrik untuk pemakaian sendiri. Dalam penelitian ini dibangun sebuah aplikasi sistem cerdas untuk memprediksi energi listrik pemakaian sendiri di PT Indonesia Power sub unit PLTA Wonogiri. Pada penelitian ini menggunakan 2 kelompok input, yaitu input FIS (Fuzzy Inference System) dan input pada NN (Neuro Fuzzy). Input data  merupakan data produksi harian energi listrik di PLTA Wonogiri selama kurun waktu 2010 – 2016. Variabel data yang digunakan dalam penelitian ini adalah data produksi listrik untuk pemakaian PLTA Wonogiri adalah energi listrik yang dihasilkan PLTA Wonogiri dengan satuan KwH (f), elevasi muka air waduk dengan satuan meter (a1) dan debit air yang masuk ke turbin dengan satuan /detik (a2).  Output yang diperoleh adalah pusat centroid (m), derajat keanggotaan (mf), bobot (w) dan konsekuen parameter ( c ). Dari hasil pengujian diperoleh keluaran dengan performansi yang optimal pada saat Fuzzy C Means 2 kelas dengan parameter laju pembelajaran 0.4, momentum 0.6 dengan bessar Mean Percentage Error 0.377970875.  Kata kunci:  prediksi, pemakaian sendiri, energi listrik, fuzzy inference system, neuro fuzzy


Sign in / Sign up

Export Citation Format

Share Document