scholarly journals Nitrogen Deficiency in Culture Affects the Metabolic Pathways in Amphora Coffeaeformis for Biodiesel Production

Author(s):  
Kang Wang ◽  
Yulin Cui ◽  
Chunxiao Meng ◽  
Zhengquan Gao ◽  
Song Qin

Abstract BackgroundAmphora coffeaeformis, a unicellular diatom, can accumulate large amounts of lipids under nitrogen (N) limitation, because of which it can act as a promising raw material for biodiesel production. However, the molecular mechanism underlying lipid accumulation in A. coffeaeformis remains unknown. ResultsIn this study, we investigated the mechanism underlying lipid accumulation under N deprivation conditions in A. coffeaeformis using RNA-seq. The results showed that the total lipid (TL) content of A. coffeaeformis in normal f/2 medium was 28.22% (TL/DW), which increased to 44.05% after 5 days of N deprivation, while the neutral lipid triacylglycerol (TAG) content increased from 10.41% (TAG/DW) to 25.21%. The transcriptional profile showed that 591 genes were up-regulated, with false discovery rate cutoff of 0.1%, and 1,021 genes were down-regulated, indicating that N deprivation induced wide-ranging reprogramming of regulation, and that most physiological activities were repressed. In addition, ribosome biogenesis, carbon fixation, and photosynthesis in A. coffeaeformis were considerably affected by N deprivation. ConclusionsIn summary, the findings shed light on the molecular mechanisms of neutral lipid accumulation and revealed the key genes involved in lipid metabolism in A. coffeaeformis, which will be useful in designing strategies for improving microalgal biodiesel production.

2021 ◽  
Author(s):  
Kang Wang ◽  
Yulin Cui ◽  
Chunxiao Meng ◽  
Zhengquan Gao ◽  
Song Qin

Abstract Background: Amphora coffeaeformis, a unicellular diatom, can accumulate large amounts of lipids under nitrogen (N) limitation, because of which it can act as a promising raw material for biodiesel production. However, the molecular mechanism underlying lipid accumulation in A. coffeaeformis remains unknown. Results: In this study, we investigated the mechanism underlying lipid accumulation under N deprivation conditions in A. coffeaeformis using RNA-seq. The results showed that the total lipid (TL) content of A. coffeaeformis in normal f/2 medium was 28.22% (TL/DW), which increased to 44.05% after 5 days of N deprivation, while the neutral lipid triacylglycerol (TAG) content increased from 10.41% (TAG/DW) to 25.21%. The transcriptional profile showed that 591 genes were up-regulated, with false discovery rate cutoff of 0.1%, and 1,021 genes were down-regulated, indicating that N deprivation induced wide-ranging reprogramming of regulation, and that most physiological activities were repressed. In addition, ribosome biogenesis, carbon fixation, and photosynthesis in A. coffeaeformis were considerably affected by N deprivation. Conclusions: In summary, the findings initially clarified the molecular mechanism of TAG accumulation and revealed the key genes involved in lipid metabolism in A. coffeaeformis, which will be useful in designing strategies for improving microalgal biodiesel production.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11525
Author(s):  
Hong Li ◽  
Jun Tan ◽  
Yun Mu ◽  
Jianfeng Gao

Chlorella has become an important raw material for biodiesel production in recent years, and Chlorella sp. TLD6B, a species with high lipid concentrations and high salt and drought tolerance, has been cultivated on a large scale. To explore the lipid accumulation of Chlorella sp. TLD6B and its relationship to external NaCl concentrations, we performed physiological measurements and genome-wide gene expression profiling under different levels of salt stress. Chlorella sp. TLD6B was able to tolerate high levels of salt stress (0.8 M NaCl addition). Lipid concentrations initially increased and then decreased as salt stress increased and were highest under the addition of 0.2 M NaCl. Comparative transcriptomic analysis revealed that salt stress enhanced the expression of genes related to sugar metabolism and fatty acid biosynthesis (the ACCases BC and BCCP, KAS II, and GPDHs involved in TAG synthesis), thereby promoting lipid accumulation under the addition of 0.2 M NaCl. However, high salinity inhibited cell growth. Expression of three SADs, whose encoded products function in unsaturated fatty acid biosynthesis, was up-regulated under high salinity (0.8 M NaCl addition). This research clarifies the relationship between salt tolerance and lipid accumulation and promotes the utilization of Chlorella sp. TLD6B.


2019 ◽  
Author(s):  
Chem Int

Biodiesel produced by transesterification process from vegetable oils or animal fats is viewed as a promising renewable energy source. Now a day’s diminishing of petroleum reserves in the ground and increasing environmental pollution prevention and regulations have made searching for renewable oxygenated energy sources from biomasses. Biodiesel is non-toxic, renewable, biodegradable, environmentally benign, energy efficient and diesel substituent fuel used in diesel engine which contributes minimal amount of global warming gases such as CO, CO2, SO2, NOX, unburned hydrocarbons, and particulate matters. The chemical composition of the biodiesel was examined by help of GC-MS and five fatty acid methyl esters such as methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linoleneate were identified. The variables that affect the amount of biodiesel such as methanol/oil molar ratio, mass weight of catalyst and temperature were studied. In addition to this the physicochemical properties of the biodiesel such as (density, kinematic viscosity, iodine value high heating value, flash point, acidic value, saponification value, carbon residue, peroxide value and ester content) were determined and its corresponding values were 87 Kg/m3, 5.63 Mm2/s, 39.56 g I/100g oil, 42.22 MJ/Kg, 132oC, 0.12 mgKOH/g, 209.72 mgKOH/g, 0.04%wt, 12.63 meq/kg, and 92.67 wt% respectively. The results of the present study showed that all physicochemical properties lie within the ASTM and EN biodiesel standards. Therefore, mango seed oil methyl ester could be used as an alternative to diesel engine.


2020 ◽  
Vol 18 (1) ◽  
pp. 874-881
Author(s):  
Laras Prasakti ◽  
Sangga Hadi Pratama ◽  
Ardian Fauzi ◽  
Yano Surya Pradana ◽  
Arief Budiman ◽  
...  

AbstractAs fossil fuels were depleting at an alarming rate, the development of renewable energy has become necessary. One of the promising renewable energy to be used is biodiesel. The interest in using third-generation feedstock, which is microalgae, is rapidly growing. The use of third-generation biodiesel feedstock will be more beneficial as it does not compete with food crop use and land utilization. The advantageous characteristic which sets microalgae apart from other biomass sources is that microalgae have high biomass yield. Conventionally, microalgae biodiesel is produced by lipid extraction followed by transesterification. In this study, combination process between hydrothermal liquefaction (HTL) and esterification is explored. The HTL process is one of the biomass thermochemical conversion methods to produce liquid fuel. In this study, the HTL process will be coupled with esterification, which takes fatty acid from HTL as raw material for producing biodiesel. Both the processes will be studied by simulating with Aspen Plus and thermodynamic analysis in terms of energy and exergy. Based on the simulation process, it was reported that both processes demand similar energy consumption. However, exergy analysis shows that total exergy loss of conventional exergy loss is greater than the HTL-esterification process.


2021 ◽  
Vol 3 (1) ◽  
pp. 19-36
Author(s):  
Tamás Mizik ◽  
Gábor Gyarmati

As Earth’s fossil energy resources are limited, there is a growing need for renewable resources such as biodiesel. That is the reason why the social, economic and environmental impacts of biofuels became an important research topic in the last decade. Depleted stocks of crude oil and the significant level of environmental pollution encourage researchers and professionals to seek and find solutions. The study aims to analyze the economic and sustainability issues of biodiesel production by a systematic literature review. During this process, 53 relevant studies were analyzed out of 13,069 identified articles. Every study agrees that there are several concerns about the first-generation technology; however, further generations cannot be price-competitive at this moment due to the immature technology and high production costs. However, there are promising alternatives, such as wastewater-based microalgae with up to 70% oil content, fat, oils and grease (FOG), when production cost is below 799 USD/gallon, and municipal solid waste-volatile fatty acids technology, where the raw material is free. Proper management of the co-products (mainly glycerol) is essential, especially at the currently low petroleum prices (0.29 USD/L), which can only be handled by the biorefineries. Sustainability is sometimes translated as cost efficiency, but the complex interpretation is becoming more common. Common elements of sustainability are environmental and social, as well as economic, issues.


Author(s):  
Charalampos Papadopoulos ◽  
Ioannis Tentes ◽  
Konstantinos Anagnostopoulos

Background: Lipid accumulation in the liver, skeletal and cardiac muscle, kidneys and pancreas causes cell dysfunction, death and inflammation, a biological phenomenon named lipotoxicity. Erythrocytes participate in the transport of lipids in the circulation, and their lipidome is determined by exchange with blood components. Objective: To summarize the current knowledge regarding the effect of toxic lipid accumulation in erythrocytes Results: Erythrocyte lipidome is altered in lipotoxic diseases like fatty liver disease, heart failure, and diabetes. In addition, ceramide, lysophosphatidylcholine, lysophosphatidic acid, palmitic acid, and free cholesterol induce erythrocyte malfunction. Conclusion: Erythrocytes are an additional cell target of lipotoxicity. Further exploration of the implicated molecular mechanisms could lead to novel therapeutic targets for cardiometabolic and hematological diseases.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 527 ◽  
Author(s):  
Gaojian Ma ◽  
Lingmei Dai ◽  
Dehua Liu ◽  
Wei Du

Acidic oil, which is easily obtained and with lower cost, is a potential raw material for biodiesel production. Apart from containing large quantity of FFAs (free fatty acids), acidic oil usually contains some amount of inorganic acid, glycerides and some other complex components, leading to complicated effect on lipase’s catalytic performance. Exploring the efficient process of converting acidic oil for biodiesel production is of great significance to promote the use of acidic oil. A two-step conversion process for acidic soybean oil was proposed in this paper, where sulfuric acid-mediated hydrolysis was adopted first, then the hydrolyzed free fatty acid, collected from the upper oil layer was further subject to the second-step esterification catalyzed by immobilized lipase Novozym435. Through this novel process, the negative effect caused by harmful impurities and by-product glycerol on lipase was eliminated. A fatty acid methyl ester (FAME) yield of 95% could be obtained with the acid value decreased to 4 mgKOH/g from 188 mgKOH/g. There was no obvious loss in lipase’s activity and a FAME yield of 90% could be maintained with the lipase being repeatedly used for 10 batches. This process was found to have a good applicability to different acidic oils, indicating it has great prospect for converting low quality oil sources for biodiesel preparation.


Author(s):  
K. Malins ◽  
V. Kampars ◽  
R. Kampare ◽  
T. Rusakova

The transesterification of vegetable oil using various kinds of alcohols is a simple and efficient renewable fuel synthesis technique. Products obtained by modifying natural triglycerides in transesterification reaction substitute fossil fuels and mineral oils. Currently the most significant is the biodiesel, a mixture of fatty acid methyl esters, which is obtained in a reaction with methanol, which in turn is obtained from fossil raw materials. In biodiesel production it would be more appropriate to use alcohols which can be obtained from renewable local raw materials. Ethanol rouses interest as a possible reagent, however, its production locally is based on the use of grain and therefore competes with food production so it would implicitly cause increase in food prices. Another raw material option is alcohols that can be obtained from furfurole. Furfurole is obtained in dehydration process from pentose sugars which can be extracted from crop straw, husk and other residues of agricultural production. From furfurole the tetrahydrofurfuryl alcohol (THFA), a raw material for biodiesel, can be produced. By transesterifying rapeseed oil with THFA it would be possible to obtain completely renewable biodiesel with properties very close to diesel [2-4]. With the purpose of developing the synthesis of such fuel, in this work a three-stage synthesis of rapeseed oil tetrahydrofurfurylesters (ROTHFE) in sulphuric acid presence has been performed, achieving product with purity over 98%. The most important qualitative factors of ROTHFE have been determined - cold filter plugging point, cetane number, water content, Iodine value, phosphorus content, density, viscosity and oxidative stability.


Sign in / Sign up

Export Citation Format

Share Document