scholarly journals Optimum cultural conditions to achieve the best biofilm formation and high level icaA transcription by Staphylococcus aureus

Author(s):  
Aram Sharifi ◽  
Abdolmajid Mohammadzadeh ◽  
Pezhman Mahmoodi ◽  
Taghi Zahraei Salehi

Abstract Background The aim of this study was to investigate the influences of different broth culture media supplemented with glucose, on the biofilm formation and ica expression of Staphylococcus aureus. The phenotypic ability to adhere to a polystyrene surface and to produce slime layer were evaluated using microtiter plate test (MtP) and Congo red tube test, respectively. Using PCR, the presence of ica locus in S. aureus strains was confirmed and subsequently, quantitative real-time RT-PCR was performed to investigate transcription of icaA in various media including Tryptic soy broth (TSB), Brain-heart infusion broth (BHIB), (Nutrient broth) NB and (Muller-Hinton broth) MHB contained 0, 0.25, 0.5, 1 and 2% glucose. Results Our results showed that although all of the studied strains adhered to the wells of polystyrene microtiter plates, the optimum rate of biofilm formation was observed for TSB medium contained 1% glucose, but biofilm formation was not significantly different in NB, MHB and BHIB media. Supplementation of all media with 1% glucose led to the highest production of biofilm formation and in all of media transcription of icaA was increased with glucose addition to one present. Conclusions The results of the present study indicated that TSB medium supplemented with 1% glucose was the most appropriate medium for evaluation of biofilm formation by S. aureus isolates.

Author(s):  
Neda Fazeli ◽  
Akram Sadat Naeemi ◽  
Seyed Amir Hossein Jalali ◽  
Hojjatollah Zamani

Background: Staphylococcus aureus and Pseudomonas aeruginosa are important human bacterial pathogens, which are resistant to several antibiotics. One of the main causes of their resistance is the ability of biofilm formation. Objectives: The present study aimed to evaluate the antibacterial and antibiofilm activity of the extracts of Vibrio parahaemolyticus, V. alginolyticus, Pseudoalteromonas gelatinilytica, and Pseudoalteromonas piscicida isolated from sea anemone (Stichodactyla haddoni) against S. aureus and P. aeruginosa. Methods: Four isolated bacteria were identified using biochemical and molecular identification methods, and their extracts were obtained by mixing the cell-free supernatants from their old broth culture using ethyl acetate and methanol as the solvents. The agar well-diffusion and micro-dilution methods were also applied to determine the antibacterial activity, minimum bactericidal concentration (MBC), and minimum inhibitory concentration (MIC) of the extracts. The ability of the extracts to inhibit biofilm formation and disrupt the preformed biofilm of the pathogens was attained through crystal violet staining in 96-well microtiter plates. To determine the nature of the extracts, they were exposed to protease enzyme, and the antibiofilm activity was compared with the untreated extracts. Results: The extracts of the four isolated bacteria inhibited bacterial growth and biofilm formation and disrupted the preformed biofilm of S. aureus (MIC = BIC = 600 µg/mL) and P. aeruginosa (MIC = BIC = 300 µg/mL). In addition, the active compounds of the extracts with antibiofilm activities were mainly proteases. Conclusions: According to the results, V. parahaemolyticus, V. alginolyticus, P. gelatinilytica, and P. piscicida had antibacterial and antibiofilm potential against S. aureus and P. aeruginosa, and their extract could also be further analyzed as an alternative to antibiotics.


2018 ◽  
Vol 28 (1) ◽  
pp. 28-35 ◽  
Author(s):  
Gayan Wijesinghe ◽  
Ayomi Dilhari ◽  
Buddhika  Gayani ◽  
Nilwala Kottegoda ◽  
Lakshman Samaranayake ◽  
...  

Objective: Pseudomonas aeruginosa and Staphylococcus aureus dual-species biofilm infections are notoriously difficult to manage. This study aimed at investigating the influence of four different culture media on the planktonic growth, adhesion, and biofilm formation of P. aeruginosa and S. aureus. Materials and Methods: We monitored four different culture media including Nutrient Broth, Brain Heart Infusion (BHI) broth, Luria-Bertani broth, and RPMI 1640 medium on the planktonic growth, adhesion, and biofilm formation of P. aeruginosa (ATCC 27853) and S. aureus (ATCC 25923) using MTT assay and scanning electron microscopy (SEM). Results: The most robust growth of the mono- and dual-species cultures was noted in BHI broth. On the contrary, RPMI 1640 medium promoted maximal initial adhesion of both the mono- and dual-species, but BHI broth fostered the maximal biofilm growth. SEM images showed profuse extracellular polysaccharide production in biofilms, particularly in coculture, in BHI medium. Conclusion: Our data demonstrate that BHI broth, relative to the other tested media, is the most conducive for in vitro evaluation of biofilm and planktonic growth kinetics of these two pathogens, both in mono- and coculture.


2020 ◽  
Vol 10 (03) ◽  
pp. 102-108
Author(s):  
Anoopkrishna Rai ◽  
Rajeshwari V. Vittal ◽  
Juliet R. Mohan Raj

Abstract Introduction In the present era, wherein occurrence of antimicrobial resistance compounded with biofilms in disease conditions has rendered present antibiotic therapy ineffective, the need for alternative strategies to treat bacterial infections has brought bacteriophages to the forefront. The antimicrobial activity of phages is often determined by a viable cell reduction assay which focuses only on planktonic forms. The physiology of an organism in biofilm differs from those that are planktonic; hence, there is a need to evaluate the activity of phages both on planktonic forms, as well as on biofilms, to select candidate therapeutic phages. Materials and Methods Bacteriophages for Staphylococcus aureus were isolated from environmental samples and characterized based on growth kinetics and DNA fingerprint patterns. Activity of isolated phages on planktonic forms was determined by viable count reduction assay. Phage ability to prevent biofilm formation and ability to disperse formed biofilms were performed in 96-well microtiter plates and biofilm estimated by crystal violet assay. Results Four bacteriophages designated, that is, P3, PD1, PE1, and PE2, were isolated and characterized. Planktonic cells of S. aureus were found to be sensitive to phages PD1, PE1, and PE2. Phages PD1 and PE2 were efficient in preventing biofilm formation and phages PD1, PE1, and P3 were efficient in dispersing formed biofilms. Conclusion The ability of some phages to disperse biofilms effectively, while unable to show the same efficiency on planktonic cells, indicates that viable count reduction assay alone may not be a sufficient tool to imply bactericidal activity of bacteriophages, especially while trying to eradicate biofilms.


2013 ◽  
Vol 8 (12) ◽  
pp. 1934578X1300801 ◽  
Author(s):  
Lívia Slobodníková ◽  
Silvia Fialová ◽  
Helena Hupková ◽  
Daniel Grančai

The subject of study was the evaluation of antibacterial activities of rosmarinic acid (RA) on clinical Staphylococcus aureus strains obtained from catheter-related infections. Minimal inhibitory (MIC) and minimal bactericidal concentrations (MBC) of RA were tested by broth microdilution assay. Biofilm-eradication activity was detected on 24-hour biofilm in microtiter plates using a regrowth technique; activity on biofilm formation was measured by a microtiter plate method after RA application to bacterial samples after 0, 1, 3 and 6 hours of biofilm development. RA had antimicrobial activity on all tested strains in concentrations from 625 to 1250 μg.mL−1 (MICs equal to MBCs). No biofilm-eradication activity on 24-hour biofilm was observed in the tested range of concentrations (from 156 to 5000 μg.mL−1). Subinhibitory RA concentrations suppressed the biofilm production, when applied at early stages of its development. Concentrations lower than subinhibitory stimulated the biofilm mass production in a concentration- and time-dependent manner. Considering our results, RA could be a candidate for a topical antimicrobial agent with killing activity on planktonic forms of bacteria and suppressing activity in the early stages of biofilm development, but probably not for the therapy of catheter-related infections as a sole agent.


2015 ◽  
Vol 59 (12) ◽  
pp. 7906-7910 ◽  
Author(s):  
Wenjiao Chang ◽  
Ding Ding ◽  
Shanshan Zhang ◽  
Yuanyuan Dai ◽  
Qing Pan ◽  
...  

ABSTRACTBrain heart infusion agar containing 3 mg/liter vancomycin (BHI-V3) was used to screen for heterogeneous vancomycin-intermediateStaphylococcus aureus(hVISA). There was markedly greater biofilm formation by isolates that grew on BHI-V3 than by strains that did not grow on BHI-V3. Increased biofilm formation by hVISA may be mediated by FnbA- and polysaccharide intercellular adhesin-dependent pathways, and upregulation ofatlAandsarAmay also contribute to enhanced biofilm formation by hVISA upon prolonged exposure to vancomycin.


2001 ◽  
Vol 64 (1) ◽  
pp. 51-57 ◽  
Author(s):  
CYNTHIA M. STEWART ◽  
MARTIN B. COLE ◽  
J. DAVID LEGAN ◽  
LOUISE SLADE ◽  
MARK H. VANDEVEN ◽  
...  

Knowing the precise boundary for growth of Staphylococcus aureus is critical for food safety risk assessment, especially in the formulation of safe, shelf-stable foods with intermediate relative humidity (RH) values. To date, most studies and resulting models have led to the presumption that S. aureus is osmotolerant. However, most studies and resulting models have focused on growth kinetics using NaCl as the humectant. In this study, glycerol was used to investigate the effects of a glass-forming nonionic humectant to avoid specific metabolic aspects of membrane ion transport. The experiments were designed to produce a growth boundary model as a tool for risk assessment. The statistical effects and interactions of RH (84 to 95% adjusted by glycerol), initial pH (4.5 to 7.0 adjusted by HCl), and potassium sorbate (0, 500, or 1,000 ppm) or calcium propionate (0, 500, or 1,000 ppm) on the aerobic growth of a five-strain S. aureus cocktail in brain heart infusion broth were explored. Inoculated broths were distributed into microtiter plates and incubated at 37°C over appropriate saturated salt slurries to maintain RH. Growth was monitored by turbidity during a 24-week period. Toxin production was explored by enterotoxin assay. The 1,280 generated data points were analyzed by SAS LIFEREG procedures, which showed all studied parameters significantly affected the growth responses of S. aureus with interactions between RH and pH. The resulting growth/no growth boundary is presented.


2018 ◽  
Vol 12 (12) ◽  
pp. 1062-1066 ◽  
Author(s):  
Alasthimannahalli Gangadhara Triveni ◽  
Mendem Suresh Kumar ◽  
Chavadi Manjunath ◽  
Channappa T Shivannavar ◽  
Subhaschandra M Gaddad

Introduction: Staphylococcal biofilms are prominent cause for acute and chronic infection both in hospital and community settings across the world. Current study explores biofilm formation by Staphylococcus aureus isolates from clinical samples by different methods. Methodology: Standard techniques used for the characterization of S.aureus. Qualitative and quantitative biofilm formation was assessed by Congo red Agar, Tube and Microtiter plate methods. Results: A total of 188 clinical isolates of S.aureus were screened for biofilm formation and 72 (38.29%) of them were found to be biofilm producers, 34 (18.08%) strong, 38 (20.21%) moderate. The remaining 116 (61.7%) were weak/ non biofilm producers. Maximum biofilm formers were recorded in pus samples (39.06%), followed by isolates from blood (38.23%) and urine (34.61%). Statistical analysis for the formation of biofilm indicated that Microtiter plate method is the most sensitive and specific method for screening biofilm production. Conclusions: Biofilm formation is one of the influential virulence factor in staphylococcal pathogenesis and persistence. Microtiter plate and Congo red agar remain as reliable methods for the qualitative and quantitative estimation of biofilm formation. Monitoring of biofilm formation in various etiological agents will help in determining the severity of infection.


2014 ◽  
Vol 77 (6) ◽  
pp. 927-933 ◽  
Author(s):  
HONGMEI ZHANG ◽  
WENYUAN ZHOU ◽  
WENYAN ZHANG ◽  
ANLIN YANG ◽  
YANLAN LIU ◽  
...  

Biofilms are significant hazards in the food industry. In this study, we investigated the effects of food additive such as citral, cinnamaldehyde, and tea polyphenols on mixed biofilm formation by foodborne Staphylococcus aureus and Salmonella serotype Enteritidis. The adhesion rates of mixed strains in sub-MIC of additives were determined by a microtiter plate assay and bacterial communication signal autoinducer 2 (AI-2) production via a bioluminescence reporter Vibrio harveyi BB170. The structure of mixed biofilm was analyzed using scanning electron microscopy. The effect of the disinfectants hydrogen peroxide, sodium hypochlorite, and peracetic acid was tested on the mixed biofilm. Our results demonstrated that citral, cinnamaldehyde, and tea polyphenols were able to significantly inhibit mixed biofilm formation, while citral could reduce the synthesis of AI-2. Conversely, we observed a significant increase in AI-2 mediated by cinnamaldehyde. Tea polyphenols at lower concentrations induced AI-2 synthesis; however, AI-2 synthesis was significantly inhibited at higher concentrations (300 μg/ml). Food additives inhibited the adhesion of mixed bacteria on stainless steel chips and increased the sensitivity of the mixed biofilm to disinfectants. In conclusion, citral, cinnamaldehyde, and tea polyphenols had strong inhibitory effects on mixed biofilm formation and also enhanced the effect of disinfectant on mixed biofilm formation. This study provides a scientific basis for the application of natural food additives to control biofilm formation of foodborne bacteria.


Author(s):  
Swathy Krishna Jayalekshmi ◽  
Arya Radhakrishnan Krishna ◽  
Trisha Mary Pandipilly Antony ◽  
Suganthi Ramasamy

Foodborne pathogens are the main threat and cause of food poisoning. The majority of food infections have been related to the biofilm formation of foodborne pathogens in the food industry. Shewanella putrefaciens (KX355803, GRD 03), a Gram-negative pathogen isolated from mackerel fish, was identified and recognized as a food spoilage bacterium and a strong biofilm producer. The adhesion or attachment ability of Shewanella putrefaciens was determined on steel, plastic, glass, PVC and wood. NB (Nutrient broth), LB (Luria-Bertani broth), TSB (Tryptic soy broth) and BHI (Brain heart infusion broth) were enriched with glucose and shows optimum for bacterial adhesion. In the microtiter plate method (MTP), the strong attachment was observed at 48 and 72 hours of incubation and significant differences were obtained at p < 0.05. As the incubation period increases, the OD value (Optical density) of samples also increase. Biofilm formation is the major cause cross-contamination, and shows resistance to certain disinfectants, which leads to environmental stress tolerance. This study suggested with optimum biofilm production of isolate from fish by using glucose enriched media on different substrates, also comparing different growth media provide a detailed idea about biofilm-forming ability at different incubation time intervals.


Sign in / Sign up

Export Citation Format

Share Document