scholarly journals Antibacterial and Antibiofilm Potential of Sea Anemone (Stichodactyla haddoni)-Isolated Vibrio (V. parahaemolyticus and V. alginolyticus), and Pseudoalteromonas (P. gelatinilytica and P. piscicida) Against Staphylococcus aureus and Pseudomonas aeruginosa

Author(s):  
Neda Fazeli ◽  
Akram Sadat Naeemi ◽  
Seyed Amir Hossein Jalali ◽  
Hojjatollah Zamani

Background: Staphylococcus aureus and Pseudomonas aeruginosa are important human bacterial pathogens, which are resistant to several antibiotics. One of the main causes of their resistance is the ability of biofilm formation. Objectives: The present study aimed to evaluate the antibacterial and antibiofilm activity of the extracts of Vibrio parahaemolyticus, V. alginolyticus, Pseudoalteromonas gelatinilytica, and Pseudoalteromonas piscicida isolated from sea anemone (Stichodactyla haddoni) against S. aureus and P. aeruginosa. Methods: Four isolated bacteria were identified using biochemical and molecular identification methods, and their extracts were obtained by mixing the cell-free supernatants from their old broth culture using ethyl acetate and methanol as the solvents. The agar well-diffusion and micro-dilution methods were also applied to determine the antibacterial activity, minimum bactericidal concentration (MBC), and minimum inhibitory concentration (MIC) of the extracts. The ability of the extracts to inhibit biofilm formation and disrupt the preformed biofilm of the pathogens was attained through crystal violet staining in 96-well microtiter plates. To determine the nature of the extracts, they were exposed to protease enzyme, and the antibiofilm activity was compared with the untreated extracts. Results: The extracts of the four isolated bacteria inhibited bacterial growth and biofilm formation and disrupted the preformed biofilm of S. aureus (MIC = BIC = 600 µg/mL) and P. aeruginosa (MIC = BIC = 300 µg/mL). In addition, the active compounds of the extracts with antibiofilm activities were mainly proteases. Conclusions: According to the results, V. parahaemolyticus, V. alginolyticus, P. gelatinilytica, and P. piscicida had antibacterial and antibiofilm potential against S. aureus and P. aeruginosa, and their extract could also be further analyzed as an alternative to antibiotics.

2021 ◽  
Author(s):  
Aram Sharifi ◽  
Abdolmajid Mohammadzadeh ◽  
Pezhman Mahmoodi ◽  
Taghi Zahraei Salehi

Abstract Background The aim of this study was to investigate the influences of different broth culture media supplemented with glucose, on the biofilm formation and ica expression of Staphylococcus aureus. The phenotypic ability to adhere to a polystyrene surface and to produce slime layer were evaluated using microtiter plate test (MtP) and Congo red tube test, respectively. Using PCR, the presence of ica locus in S. aureus strains was confirmed and subsequently, quantitative real-time RT-PCR was performed to investigate transcription of icaA in various media including Tryptic soy broth (TSB), Brain-heart infusion broth (BHIB), (Nutrient broth) NB and (Muller-Hinton broth) MHB contained 0, 0.25, 0.5, 1 and 2% glucose. Results Our results showed that although all of the studied strains adhered to the wells of polystyrene microtiter plates, the optimum rate of biofilm formation was observed for TSB medium contained 1% glucose, but biofilm formation was not significantly different in NB, MHB and BHIB media. Supplementation of all media with 1% glucose led to the highest production of biofilm formation and in all of media transcription of icaA was increased with glucose addition to one present. Conclusions The results of the present study indicated that TSB medium supplemented with 1% glucose was the most appropriate medium for evaluation of biofilm formation by S. aureus isolates.


2012 ◽  
Vol 56 (8) ◽  
pp. 4360-4364 ◽  
Author(s):  
Vandana Singh ◽  
Vaneet Arora ◽  
M. Jahangir Alam ◽  
Kevin W. Garey

ABSTRACTStaphylococcus aureusandPseudomonas aeruginosaare common nosocomial pathogens responsible for biofilm-associated infections. Proton pump inhibitors (PPI), such as esomeprazole, may have novel antimicrobial properties. The objective of this study was to assess whether esomeprazole prevents sessile bacterial growth and biofilm formation and whether it may have synergistic killing effects with standard antibiotics. The antibiofilm activity of esomeprazole at 0.25 mM was tested against two strains each ofS. aureusandP. aeruginosa. Bacterial biofilms were prepared using a commercially available 96-peg-plate Calgary biofilm device. Sessile bacterial CFU counts and biomass were assessed during 72 hours of esomeprazole exposure. The killing activities after an additional 24 hours of vancomycin (againstS. aureus) and meropenem (againstP. aeruginosa) treatment with or without preexposure to esomeprazole were also assessed by CFU and biomass analyses.P. aeruginosaandS. aureusstrains exposed to esomeprazole displayed decreased sessile bacterial growth and biomass (P< 0.001, each parameter). After 72 h of exposure, there was a 1-log10decrease in the CFU/ml of esomeprazole-exposedP. aeruginosaandS. aureusstrains compared to controls (P< 0.001). After 72 h of exposure, measured absorbance was 100% greater inP. aeruginosacontrol strains than in esomeprazole-exposed strains (P< 0.001). Increased killing and decreased biomass were observed for esomeprazole-treated bacteria compared to untreated controls exposed to conventional antibiotics (P< 0.001, each parameter). Reduced biofilm growth after 24 h was visibly apparent by light micrographs forP. aeruginosaandS. aureusisolates exposed to esomeprazole compared to untreated controls. In conclusion, esomeprazole demonstrated an antibiofilm effect against biofilm-producingS. aureusandP. aeruginosa.


2016 ◽  
Vol 6 (01) ◽  
pp. 5218
Author(s):  
Laxmi Mohandas ◽  
Anju T. R. ◽  
Sarita G. Bhat*

An assortment of redox-active phenazine compounds like pyocyanin with their characteristic blue-green colour are synthesized by Pseudomonas aeruginosa, Gram-negative opportunistic pathogens, which are also considered one of the most commercially valuable microorganisms. In this study, pyocyanin from Pseudomonas aeruginosa BTRY1 from food sample was assessed for its antibiofilm activity by micro titer plate assay against strong biofilm producers belonging to the genera Bacillus, Staphylococcus, Brevibacterium and Micrococcus. Pyocyanin inhibited biofilm activity in very minute concentrations. This was also confirmed by Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). Both SEM and CLSM helped to visualize the biocontrol of biofilm formation by eight pathogens. The imaging and quantification by CLSM also established the impact of pyocyanin on biofilm-biocontrol mainly in the food industry.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1710
Author(s):  
Mahmoud Emam ◽  
Doaa R. Abdel-Haleem ◽  
Maha M. Salem ◽  
Lina Jamil M. Abdel-Hafez ◽  
Rasha R. Abdel Latif ◽  
...  

Infections associated with the emergence of multidrug resistance and mosquito-borne diseases have resulted in serious crises associated with high mortality and left behind a huge socioeconomic burden. The chemical investigation of Lavandulacoronopifolia aerial parts extract using HPLC–MS/MS led to the tentative identification of 46 compounds belonging to phenolic acids, flavonoids and their glycosides, and biflavonoids. The extract displayed larvicidal activity against Culex pipiens larvae (LC50 = 29.08 µg/mL at 72 h). It significantly inhibited cytochrome P-450 monooxygenase (CYP450), acetylcholinesterase (AChE), and carboxylesterase (CarE) enzymes with the comparable pattern to the control group, which could explain the mode of larvae toxification. The extract also inhibited the biofilm formation of Pseudomonas aeruginosa by 17–38% at different Minimum Inhibitory Concentrations (MICs) (0.5–0.125 mg/mL) while the activity was doubled when combined with ciprofloxacin (ratio = 1:1 v:v). In conclusion, the wild plant, L.coronopifolia, can be considered a promising natural source against resistant bacteria and infectious carriers.


2010 ◽  
Vol 0 (3(11)) ◽  
pp. 32-40
Author(s):  
I. О. Малярчик ◽  
Т. О. Філіпова ◽  
Т. О. Філіпова ◽  
Б. М. Галкін ◽  
Б. М. Галкін

2020 ◽  
Vol 10 (03) ◽  
pp. 102-108
Author(s):  
Anoopkrishna Rai ◽  
Rajeshwari V. Vittal ◽  
Juliet R. Mohan Raj

Abstract Introduction In the present era, wherein occurrence of antimicrobial resistance compounded with biofilms in disease conditions has rendered present antibiotic therapy ineffective, the need for alternative strategies to treat bacterial infections has brought bacteriophages to the forefront. The antimicrobial activity of phages is often determined by a viable cell reduction assay which focuses only on planktonic forms. The physiology of an organism in biofilm differs from those that are planktonic; hence, there is a need to evaluate the activity of phages both on planktonic forms, as well as on biofilms, to select candidate therapeutic phages. Materials and Methods Bacteriophages for Staphylococcus aureus were isolated from environmental samples and characterized based on growth kinetics and DNA fingerprint patterns. Activity of isolated phages on planktonic forms was determined by viable count reduction assay. Phage ability to prevent biofilm formation and ability to disperse formed biofilms were performed in 96-well microtiter plates and biofilm estimated by crystal violet assay. Results Four bacteriophages designated, that is, P3, PD1, PE1, and PE2, were isolated and characterized. Planktonic cells of S. aureus were found to be sensitive to phages PD1, PE1, and PE2. Phages PD1 and PE2 were efficient in preventing biofilm formation and phages PD1, PE1, and P3 were efficient in dispersing formed biofilms. Conclusion The ability of some phages to disperse biofilms effectively, while unable to show the same efficiency on planktonic cells, indicates that viable count reduction assay alone may not be a sufficient tool to imply bactericidal activity of bacteriophages, especially while trying to eradicate biofilms.


Antioxidants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 117 ◽  
Author(s):  
Federica Blando ◽  
Rossella Russo ◽  
Carmine Negro ◽  
Luigi De Bellis ◽  
Stefania Frassinetti

Plant extracts are a rich source of natural compounds with antimicrobial properties, which are able to prevent, at some extent, the growth of foodborne pathogens. The aim of this study was to investigate the potential of polyphenolic extracts from cladodes of Opuntia ficus-indica (L.) Mill. to inhibit the growth of some enterobacteria and the biofilm formation by Staphylococcus aureus. Opuntia ficus-indica cladodes at two stages of development were analysed for total phenolic content and antioxidant activity by Oxygen Radical Absorbance Capacity (ORAC) and Trolox equivalent antioxidant capacity (TEAC) (in vitro assays) and by cellular antioxidant activity in red blood cells (CAA-RBC) (ex vivo assay). The Liquid Chromatography Time-of-Flight Mass Spectrometry (LC/MS–TOF) analysis of the polyphenolic extracts revealed high levels of piscidic acid, eucomic acid, isorhamnetin derivatives and rutin, particularly in the immature cladode extracts. Opuntia cladodes extracts showed a remarkable antioxidant activity (in vitro and ex vivo), a selective inhibition of the growth of Gram-positive bacteria, and an inhibition of Staphylococcus aureus biofilm formation. Our results suggest and confirm that Opuntia ficus-indica cladode extracts could be employed as functional food, due to the high polyphenolic content and antioxidant capacity, and used as natural additive for food process control and food safety.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Edward Ntim Gasu ◽  
Hubert Senanu Ahor ◽  
Lawrence Sheringham Borquaye

Bacteria in biofilms are encased in an extracellular polymeric matrix that limits exposure of microbial cells to lethal doses of antimicrobial agents, leading to resistance. In Pseudomonas aeruginosa, biofilm formation is regulated by cell-to-cell communication, called quorum sensing. Quorum sensing facilitates a variety of bacterial physiological functions such as swarming motility and protease, pyoverdine, and pyocyanin productions. Peptide mix from the marine mollusc, Olivancillaria hiatula, has been studied for its antibiofilm activity against Pseudomonas aeruginosa. Microscopy and microtiter plate-based assays were used to evaluate biofilm inhibitory activities. Effect of the peptide mix on quorum sensing-mediated processes was also evaluated. Peptide mix proved to be a good antibiofilm agent, requiring less than 39 μg/mL to inhibit 50% biofilm formation. Micrographs obtained confirmed biofilm inhibition at 1/2 MIC whereas 2.5 mg/mL was required to degrade preformed biofilm. There was a marked attenuation in quorum sensing-mediated phenotypes as well. At 1/2 MIC of peptide, the expression of pyocyanin, pyoverdine, and protease was inhibited by 60%, 72%, and 54%, respectively. Additionally, swarming motility was repressed by peptide in a dose-dependent manner. These results suggest that the peptide mix from Olivancillaria hiatula probably inhibits biofilm formation by interfering with cell-to-cell communication in Pseudomonas aeruginosa.


Sign in / Sign up

Export Citation Format

Share Document